CURRICULUM FOR
DIPLOMA OF ASSOCIATE
ENGINEER
IN
GLASS, CERAMICS & POTTERY
TECHNOLOGY
(3 - Years Course)
INTRODUCTION

The important characteristics of the ceramics industry are that it is the basic of the successful operation of many other industries. Refractories are the basic components of the metallurgical industry. Abrasives are essential to the Machine tool and automobiles Industry. Glass products are also essential to the automobiles Industry as well as architectural, electronic and electrical industries. For various special electrical, magnetic instrument are made of glass & ceramics is essential for the development of electronic control devices computers etc. Modern ceramics plays very important role in Rocketry, Missile and in Satellites. Reactors are absolutely dependant on modern ceramics materials as a matter of fact almost in every industrial production line, Offices and Homes are dependent on ceramics Materials. Newly developed devices are being in corporate with ceramics materials because of their useful chemical, electrical mechanical thermal and structural properties. Thus ceramics are important because this is the need of a large and basic Industry and also their properties are critical for many applications.
OBJECTIVES

1) To train the students in various production techniques

2) Students are trained to be capable to identify, and analyze the ceramics materials and also to produce ceramics ware like insulators, Table wares, Tiles, Sanitary wares etc. from the local raw materials.

3) To familiarize the students with the machinery and equipments their installation and operations used in the glass industry.

4) To train the students in the design of various types of furnaces Kilns used in Glass and Ceramics Industry.

5) To familiarize the students with the formations of body and glazes.

6) To train the students for the eliminations of defects which come across in the running Industries.

Curriculum Salients:

<table>
<thead>
<tr>
<th>Entry Level</th>
<th>Matric (Science)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Course</td>
<td>3-Year</td>
</tr>
<tr>
<td>Training Methodology</td>
<td>Practical (46%)</td>
</tr>
<tr>
<td></td>
<td>Theory (54%)</td>
</tr>
<tr>
<td></td>
<td>Practical (40%)</td>
</tr>
<tr>
<td></td>
<td>Theory (60%)</td>
</tr>
<tr>
<td></td>
<td>Practical (37%)</td>
</tr>
<tr>
<td></td>
<td>Theory (63%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1<sup>st</sup> Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2<sup>nd</sup> Year</td>
</tr>
<tr>
<td>3<sup>rd</sup> Year</td>
</tr>
</tbody>
</table>

Instructional Media: Urdu, English
Scheme Of Studies
Glass, Ceramics & Pottery 3-Year Course

<table>
<thead>
<tr>
<th>1st Year</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GEN 111 Islamiat / Pak. Studies</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2. ENG 112 Technical English</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>3. MATH 133 Applied Math</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>4. PHY 124 Applied Physics.</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>5. CH 112 Applied Chemistry</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>6. COMP 122 Computer Applications</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>7. CHT 153 Basic Chemical Engineering</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>8. MT 143 Basic Engineering Drawing and CAD</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>58</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Year</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GEN 211 Islamiat / Pak. Studies</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td>2. GCT 202 Workshop Techniques</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td>3. GCT 213 Glass Technology</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>81</td>
</tr>
<tr>
<td>4. GCT 224 Particle size reduction and glazes</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>5. GCT 243 Properties of Glass & Ceramics Materials</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>95</td>
</tr>
<tr>
<td>6. GCT 263 Ceramic Raw Materials</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>7. GCT 253 Ceramic Production Technique</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>107</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Year</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GEN 311 Islamiat / Pak. Studies</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2. GCT 303 Glass Manufacturing Processes</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3. GCT 323 Special / Technical Ceramics</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4. GCT 353 Sanitary wares and Tiles</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5. GCT 373 Fuels and Kilns</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6. MGM 311 Industrial Management & Human Resource Relationship</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7. OHSE 301 Occupational Health, Safety & Environment</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8. GCT 363 Project</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>18</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
FIRST YEAR
ENG-122 TECHNICAL ENGLISH

Total Contact Hours
Theory 64

COURSE AIMS:
At the end of the course, the students will be equipped with cognitive skill enable them at present facts in a systematic and logical manner to meet the language demand of the dynamic field of commerce and industry to functional day to day use and will inculcate skills of reading writing and comprehensive

COURSE CONTENTS

PAPER “A”
1. PROSE / TEXT 16 HOURS
First eight essays of Intermediate English Book –II
2. CLOSE TEST 4 HOURS
A passage comprising 50-100 words will be selected from the text. Every 11th word or any word for that matter will be omitted. The number of missing word will range between 5-10. The chosen word may or may not be the one used in the text, but it should be an appropriate word.

PAPER “B”

3. GRAMMAR 26 HOURS
 3.1 Sentence structure
 3.2 Tenses
 3.3 Parts of speech
 3.4 Punctuation
 3.5 Change of narration
 3.6 One word for several
 3.7 Words often confused
4. **COMPOSITION**
 8 HOURS
 4.1 Letters / messages
 4.2 Job application letter
 4.3 For character certificate / for grant of scholarship
 4.4 Telegrams, Cablegrams and Radiograms, Telexes, Facsimiles
 4.5 Essay writing
 4.6 Technical education, science and our life, computers, environmental pollution, duties of a student

INSTRUCTIONAL OBJECTIVES

PAPER “A”
1. **DEMONSTRATE BETTER READING, COMPREHENSIVE AND VOCABULARY**
 Manipulate, skimming and scanning of the text
 Identify the new ideas
 Reproduce facts, characters in own words
 1.4 Write summary of stories
2. **UNDERSTAND FACTS OF THE TEXT**
 2.1 Rewrite words to fill in the blanks recalling the text
 2.2 Use own words to fill in the blanks

PAPER “B”
3. **APPLY THE RULES OF GRAMMAR IN WRITING AND SPEAKING**
 3.1 Use rules of grammar to construct meaningful sentences containing a subject and a predicate
 3.2 State classification of time, i.e. present, past and future and use verb tense correctly in different forms to denote relevant time
 3.3 Identify function words and content words
 3.4 Use marks of punctuation to make sense clear
 3.5 Relate what a person says in direct and indirect forms
3.6 Compose his writing.
3.7 Distinguish between confusing words.

4. APPLY THE CONCEPTS OF COMPOSITION WRITING TO PRACTICAL SITUATIONS
4.1 Use concept to construct applications for employment, for character certificate for grant of scholarship.
4.2 Define and write telegrams, cablegrams, telexes, facsimiles & radiograms.
4.3 Describe steps of good composition writing.
4.4 Describe features of a good composition.
4.5 Describe methods of composition writing.
4.6 Use these concepts to organize facts and describe them systematically in practical situation.

5. APPLIES RULES OF TRANSLATION
5.1 Describe confusion
5.2 Describe rules of translation
5.3 Use rules of translation from Urdu to English in simple paragraph and sentences

6. TRANSLATION
6.1 Translation from Urdu into English for foreign students: A paragraph or a dialogue

RECOMMENDED BOOKS:
1. Intermediate English Book - II
2. An English Grammar and composition of intermediate level
3. A Hand Book of English Students by Gatherer
Math – 133 Applied Math

<table>
<thead>
<tr>
<th>Total Contact Hours</th>
<th>96</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>96 hours</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE AIMS:

The student will be able to solve problems of Algebra, Trigonometry, Vectors, Menstruation, Matrices and Determinants. Develop skill, mathematical attitudes and logical perception in the use of mathematical instruments as requires in the technological field. They can acquire mathematical clarity and insight in the solution of technical problems.

COURSE CONTENTS

1. **QUADRATIC EQUATIONS**
 - Standard form
 - Solution
 - Nature of roots
 - Sum & product of roots
 - Formation
 - Problems

2. **SEQUENCE AND SERIES**
 - Sequence & series
 - Arithmetic progressions
 - Nth term & sum of the first N terms
 - Means and problems
 - Geometric progressions
 - Nth term & sum of the first N terms
 - Means & problems

3. **BINOMIAL THEOREM**
 - Factorials
 - Binomial expression
 - Binomial co-efficient
Statement
The general term
The binomial series
Problems

4. **PRACTICAL FRACTIONS**
 - Introduction
 - Linear Distinct Factors Case-I
 - Linear Repeated Factors Case-II
 - Quadratic Distinct Factors Case-III
 - Quadratic Repeated Factors Case-IV
 Problems

5. **TRIGONOMETRIC FUNCTIONS & RATIONS**
 - Trigonometric Functions of any angle
 - Signs of Trigonometric Functions
 - Trigonometric Rations Of Particular Angles
 - Fundamental Identities
 Problems

6. **VECTORS**
 - Scalars & Vectors
 - Addition & Subtraction
 - The Unit Vectors I.J.K
 - Direction Cosines
 - Scalar or Dot Products
 - Deductions
 - Dot product in terms of orthogonal components
 - Deductions
 - Analytic expression for a x b
 Problems

7. **MATRICES AND DETERMINANTS**
 - Definition of Matrix
 - Rows & Columns
Order of a Matrix
Algebra of Matrices
Determinants
Properties of Determinants
Solution of Linear Equations
Problems

8. **DIFFERENTIATION**
 Increments
 Differential Coefficient or Derivative
 Differentiation Ab-Initio or by first principle
 Geometrical Interpretation or Differential Coefficient
 Differential Coefficient of X^n, $(ax+b)^n$
 Three important rules
 Problems

9. **DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS**
 Differential Coefficient of Sin x, Cos x, Tan x from first principle
 Differentiation of inverse Trigonometric functions
 Problems

10. **FUNCTIONS & LIMITS**
 Constant & Variable Quantities
 Functions & their classification
 The concept of limit
 Limit of a Function
 Fundamental Theorems on limit
 Some important Limits
 Problems

11. **METHODS OF INTEGRATION**
 Integration by substitution
 Integration by parts
 Problems
 Degree and order of definite integral
First order differential equation
Solution
Problems

12. **EQUATIONS OF STRAIGHT LINE**

Some important forms
General form
Angle formula
Parallelism & perpendicularity
Problems

INSTRUCTIONAL OBJECTIVES

1. **USE DIFFERENT METHODS FOR THE SOLUTION OF QUADRATIC EQUATION**
 Define a standard quadratic equation
 Use methods of factorization and method of completing the square for solving the equations
 Derive quadratic formula
 Write expression for the discriminate.
 Explain nature of the roots of a quadratic equation
 Calculation sum and product of the roots
 Form a quadratic equation from the given roots
 Solve problems involving quadratic equations

2. **UNDERSTAND APPLY CONCEPT OF SEQUENCE AND SERIES**
 Define an arithmetic sequence and a series
 Drive formula for the nth term of an A.P
 Explain arithmetic mean between two numbers
 Insert n arithmetic means between two numbers
 Derive formula for summation of an arithmetic series
 Solve problems on arithmetic progression and series
 Define a geometric sequence and a series
Derive formula for nth term of a G.P
Explain geometric mean between two numbers
Insert n geometric means between two numbers
Derive a formula for the summation of geometric series
Deduce a formula for the summation of an infinite G.P
Solve problems using these formulas

3. **EXPAND AND EXTRACT ROOTS OF A BINOMIAL**

State binomial theorem for positive integral index
Explain binomial coefficients, \((n, 0), (n, 1), (n, 2), \ldots, (n, n)\)
Derive expression for the general terms
Calculate the specified terms
Expand a binomial of a given index
Extract the specified roots
Compute the approximate value to a given decimal place
Solve problems involving binomials

4. **RESOLVE A SINGLE FRACTION INTO PARTIAL FRACTIONS USING DIFFERENT METHODS**

Define a partial fraction, a proper and an improper fractions
Explain all the four types of partial fractions
Setup equivalent partial fractions for each type
Explain (tie methods for finding constants involved)
Resolve a single fraction into partial fractions
Solve problems involving all the four types

5. **APPLY BASIC CONCEPTS AND PRINCIPLES OF TRIGONOMETRIC FUNCTIONS**

Define the basic trigonometric functions / ratios of an angle as ratios of the sides of a right triangle
Derive fundamental identities
Find trigonometric ratios of particular angles
Draw the graph of trigonometric functions
Solve problems involving trigonometric functions
6. USE THE CONCEPT AND PRINCIPLES OF VECTORS IN SOLVING TECHNOLOGICAL PROBLEMS
 Define vector quantity
 Explain addition and subtraction of vector
 Illustrate unit vector i, j, k.
 Express a vector in the component form
 Explain magnitude, unit vector, direction cosines of a vector
 Derive analytic expression for dot product and cross product of two vector
 Deduce conditions of perpendicularity and parallelism of two vectors
 Solve problems

7. USE THE CONCEPT OF MATRICES & DETERMINANTS IN SOLVING TECHNOLOGICAL PROBLEMS
 Define a matrix and a determinant
 List types of matrices
 Define transpose, adjoin and inverse of a matrix
 State properties of determinants
 Explain basic concepts
 Explain algebra of matrices
 Solve linear equation by matrices
 Explain the solution of a determinant
 Use crammers rule for solving linear equations

8. UNDERSTAND THE CONCEPT OF DIFFERENTIAL COEFFICIENT
 Derive mathematical expression for a differential coefficient
 Explain geometrical interpretation of differential coefficient
 Differentiate a constant / a constant associated with a variable and the sum of finite number of functions
 Solve related problems
9. **USE RULES OF DIFFERENTIATION TO SOLVE PROBLEMS INVOLVING TRIGONOMETRIC FUNCTIONS**
 Differentiate from first principle \(\sin x, \cos x, \tan x \).
 Derive formula derivatives of \(\sec x, \cosec x, \cot x \).
 Find differential coefficients of inverse trigonometric functions
 Solve problems based on these formulas

10. **USE THE CONCEPT OF FUNCTIONS AND THEIR LIMITS IN SOLVING SIMPLE PROBLEMS**
 Define a function
 List nil type of functions
 Explain the concept of limit of a function
 Explain fundamental theorems on limits
 Derive some important limits
 Solve problems on limits

11. **USE RULES OF INTEGRATION IN SOLVING RELEVANT PROBLEMS & UNDERSTAND DIFFERENT METHODS OF INTEGRATION**
 Explain the concept of integration
 State basic theorems of integration
 List some important rules of integration
 Derive fundamental formulas of integration
 Solve problems of integration based on these rules / formulas
 List standard formulas of integration
 Integrate a function by substitution method
 Find integrals by the method of integration by parts
 Solve problems using these methods

12. **USE EQUATIONS OF STRAIGHT LINE IN SOLVING PROBLEMS**
 Define a straight line
 Write general form of equation of a straight line
 Derive slope intercept and intercept forms of equations of a straight line
Derive expression for angle between two straight lines
Derive conditions of perpendicularity and parallelism of two straight lines
Solve problems involving these equations / formulas

RECOMMENDED BOOKS:

PHY – 124 APPLIED PHYSICS

Total Contact Hours 160
Theory 64 hours
Practical 96 hours

COURSE AIMS:

The student will be able to understand the fundamental principles and concept of Physics. Use these to solve problems in practical situations / technological course and understand concepts to learn advance physics / technical course.

COURSE CONTENTS

1. MEASUREMENT 5 Hours

 Fundamental units and derived units
 Systems of measurement and S.I units
 Concepts of dimensions, dimensional formula
 Conversion from one system to another
 Significant figures

2. SCALARS AND VECTORS 4 Hours

 Revision of head to tail rule
 Laws of parallelogram, triangle and polygon of forces
 Resolution of a vector
 Addition of vectors by rectangular components
 Multiplication of two vectors, dot product and cross product

3. MOTION 5 Hours

 Review of laws and equation of motion
 Laws of conservation of momentum
 Angular motion
 Relation between linear and angular motion
 Centripetal acceleration and force
 Equation of angular motion

4. TORQUE, EQUILIBRIUM AND ROTATIONAL INERTIA 5 Hours

 Center of gravity and center of mass
Equilibrium and its conditions
Torque and angular acceleration
Rotational inertia

5. **WAVE MOTION**

 Review Hook’s Law of elasticity
 Motion under an elastic restoring force
 Characteristics of harmonic motion
 S.H.M and circular motion
 Simple pendulum
 Wave form of S.H.M
 Resonance
 Transverse vibration of a stretched string

6. **LIGHT**

 Review laws of reflection and refraction
 Image formation by mirrors and lenses
 Optical instruments
 Interference, diffraction, polarization of light waves

7. **LASERS**

 Corpuscular theory of light
 Emission and absorption of light
 Stimulated absorption and emission of light
 Laser principle
 Structure and working of lasers
 Types of lasers with brief description
 Applications of basic concepts
 Material processing
 Laser welding
 Laser assisted machining
 Micro machining
 Drilling, scribing and marking
8. **HEAT**

 Review of calorimetric and gas laws
 Thermal expansion of solids, liquids and gases
 Heat of fusion, vaporization
 Humidity, absolute and relative
 Law of cooling
 Thermoelectricity
 Thermocouple

9. **THERMODYNAMICS**

 Heat energy and internal energy
 First law of thermodynamics
 Isometric and adiabatic processes
 Efficiency of heat engine
 Second law of thermodynamic (both statement)
 Heat engine and refrigerator

10. **TRANSFER OF HEAT**

 Review: modes of transfer of heat
 Emission and absorption of heat
 Black body radiation
 Laws of energy distribution
 Planck’s Quantum Theory
 The photoelectric effect
 X-rays, production, properties and uses

11. **ATOMIC NUCLEUS**

 Structure of the nucleus
 Radioactivity
 Radioactive series
 Transmutation of elements
 The fission reaction
 The fusion reaction
12. **NUCLEAR RADIATIONS**
 Properties and interaction with matter
 Radiation detectors
 Radiation damage and its effects
 Radiation therapy
 Radioactive tracers

13. **MAGNETIC & SEMI CONDUCTOR MATERIALS**
 Magnetism
 Domains theory
 Para, dia and ferromagnetism and magnetic materials
 Crystalline structure of solids
 Conductors, semiconductors, insulators

INSTRUCTIONAL OBJECTIVES

1. **USE CONCEPTS OF MEASUREMENT TO PRACTICAL SITUATIONS AND TECHNOLOGICAL PROBLEMS**
 Write dimensional formulae for physical quantities
 Derive units using dimensional equations
 Convert a measurement from one system to another
 Use concepts of measurement and significant figures in problems solving

2. **USE CONCEPTS OF SCALARS AND VECTORS IN SOLVING PROBLEMS INVOLVING THESE CONCEPTS**
 Explain laws of parallelogram, triangle and polygon of force
 Describe method of resolution of a vector into components
 Describe method of addition of vectors by rectangular components
 Differentiate between dot product and cross product of vectors
 Use the concepts in solving problems involving addition resolution and multiplication of vectors
3. **USE THE LAW OF CONSERVATION OF MOMENTUM AND CONCEPTS OF ANGULAR MOTION TO PRACTICAL SITUATIONS**
Use law of conservation of momentum practical / technological problems
Explain relation between linear and angular motion
Use concepts and equations of angular motion to solve relevant technological problems

4. **USE CONCEPTS OF TORQUE, EQUILIBRIUM AND ROTATIONAL INERTIA TO PRACTICAL SITUATION / PROBLEMS**
 Distinguish between center of gravity and center of mass
 Explain rotational equilibrium and use conditions
 Explain rotational inertia giving examples
 Use the above concepts in solving technological problems

5. **USE CONCEPTS OF WAVE MOTION IN SOLVING RELEVANT PROBLEMS**
 Explain Hook’s law of elasticity
 Derive formula for motion under an elastic restoring force
 Derive formula for simple harmonic motion and simple pendulum
 Explain wave form with reference to S.H.M and circular motion
 Explain resonance
 Explain transverse vibration of a stretched string
 Use the above concepts and formula of S.H.M to solve relevant problems

6. **USE THE CONCEPTS OF GEOMETRICAL OPTICS TO MIRRORS AND LENSES**
 Explain laws of reflection and refraction
 Use mirror formula to solve problems
 Use the concepts of image formation by mirrors and lenses to describe working of optical instruments, e.g. microscope, telescope, camera and sextant
7. UNDERSTAND THE STRUCTURE, WORKING AND USES OF LASERS
 Explain the stimulated emission of radiation
 Explain the laser principle
 Describe the structure and working of lasers
 Distinguish between types of lasers
 Describe the applications of lasers

8. UNDERSTAND CONCEPTS OF HEAT
 Explain calorimetric
 Explain gas laws giving mathematical expressions
 Explain thermal expansion of solids, liquids and gases
 Distinguish between heat of fusion, vaporization
 Distinguish between absolute and relative humidity
 Describe laws of cooling
 Explain basic concepts of thermoelectricity
 Describe thermocouple, giving its principle, structure and working

9. UNDERSTAND LAWS OF THERMODYNAMICS
 Distinguish between heat energy and internal energy
 Explain first law of thermodynamics giving its applications
 Distinguish between isometric and adiabatic processes
 Explain second law of thermodynamics describing alternate statements
 Distinguish between work of heat engine and refrigerator

10. UNDERSTAND LAWS OF ENERGY DISTRIBUTION AND EMISSION OF RADIATION
 Explain modes of transfer of heat
 Explain back body radiation and laws of energy distribution
 Describe Planck’s Quantum Theory
 Explain photoelectric effect
 Explain production, properties and uses of X-rays.
11. UNDERSTAND THE STRUCTURE OF THE ATOMIC NUCLEUS AND RELEVANT ACTIVITIES

Describe the structure of the nucleus
Explain radioactivity and radioactive series
Explain transmutation of elements
Distinguish between fission reaction and fusion reaction

12. UNDERSTAND NUCLEAR RADIATIONS THEIR EFFECTS AND USES

Describe properties of nuclear radiations and their interaction with matter
Explain working of radiation detectors
Explain damaging effects of nuclear radiations
Explain radiation therapy
Describe radioactive tracers
Describe applications of radiation techniques in course contents

13. UNDERSTAND BASIC CONCEPTS CLASSIFICATION OF MAGNETIC MATERIALS

Explain domains theory of magnetism
Distinguish between Para, dia and ferromagnetic and magnetic materials
Distinguish between B and H
LIST OF PRACTICAL

1. Draw graphs representing the functions
 \[Y = mx \] for \(m = 0, 0.5, 1, 2 \)
 \[Y = x^2 \]
 \[Y = \frac{1}{x} \]

2. Find the volume of a given solid cylinder using Vernier calipers

3. Find the area of cross-section of the given wire using micrometer screw gauge

4. Prove that force is directly proportional to a) mass, (b) acceleration, using Fletcher's trolley

5. Verify law of parallelogram of force using Grave sands apparatus

6. Verify law of triangle of forces and Lami’s theorem

7. Determine the weight of a given body using
 Law of parallelogram of forces
 Law of triangle of forces
 Lami’s theorem

8. Verify law of polygon of forces using Grave sands apparatus

9. Locate the positions and magnitude of resultant of like parallel forces

10. Determine the resultant of two unlike parallel forces

11. Find the weight of a given body using principles of moments

12. Locate the center of gravity of regular and irregular shaped bodies

13. Find young’s modules of elasticity of a metallic wire

14. Verify Hook’s law using helical spring

15. Study of frequency of stretched string with length

16. Study of variation of frequency of stretched string with tension

17. Study of resonance of air column in resonance tube and fling velocity of sound.

18. Find the frequency of the given tuning fork using resonance tube

19. Find velocity of sound in rod by kundt’s tube

20. Verify rectilinear propagation of light and study shadow formation
21. Study effect of rotation of plane mirror on reflection
22. Compare the refractive indices of given glass slabs
23. Find focal length of concave mirror by locating center of curvature
24. Find focal length of concave mirror by object and image method
25. Find focal length of concave mirror with converging lens
26. Find refractive index of glass by spectrometer
27. Find refractive index of glass by spectrometer
28. Find focal length of converging lens by plane mirror
29. Find focal length of converging lens by displacement method
30. Find focal length of diverging lens using converging lens
31. Find focal length of diverging lens using concave mirror
32. Find angular magnification of an astronomical telescope
33. Find angular magnification of a simple microscope (magnifying glass)
34. Find angular magnification of a simple compound microscope
35. Study working and structure of camera
36. Study working and structure of sextant
37. Compare the different scales of temperature and verify the conversion formula
38. Determine the specific heat of lead shots
39. Find the coefficient of linear expansion of a metallic rod
40. Find the heat of fusion of ice
41. Find the heat of vaporization
42. Determine relative humidity using hygrometer
CH – 112 APPLIED CHEMISTRY

Total Contact Hours 128 T P C
Theory 32 hours 1 3 2
Practical 96 hours

Pre-requisites: The student must have studied the subject of elective chemistry at secondary school level.

COURSE AIMS:

After studying this course a student will be able to:

1. Understand the significance and role of chemistry in the development of modern technology
2. Become acquired with the basic principles of chemistry as applied in the study of relevant technology.
4. Gains skill for the efficient conduct of practical in a chemistry lab.

COURSE CONTENTS

1. INTRODUCTION AND FUNDAMENTAL CONCEPTS 2 Hours
Orientation with reference to this technology
Terms used & units of measurements in the study of chemistry
Chemical reactions & their types

2. ATOMIC STRUCTURE 2 Hours
Sub atomic particles
Architecture of atoms of elements. Atomic no. & atomic weight
The periodic classification of elements periodic law
 General characteristics of a period and group

3. CHEMICAL BOND 2 Hours
Nature of chemical bond
Electrovalent bond with examples
Covalent bond (polar and non-polar, sigma & pie bonds with examples)
Co-ordinate bond with examples
4. **WATER**
 2 Hours
 Chemical nature and properties
 Impurities
 Hardness of water (types, causes and removal)
 Scales of measuring hardness (degrees clark French, PPM, Mg- per liter)
 Boiler feed water, scales and treatment
 Sea water desalination, sewage treatment

5. **ACIDS, BASES AND SALTS**
 2 Hours
 Definitions with examples
 Properties, their strength, basicity and acidity
 Salts and their classification with examples
 Ph – value and scale

6. **OXIDATION & REDUCTION**
 2 Hours
 The process, definition and examples
 Oxidizing and reducing agents
 Oxides and their classifications

7. **NUCLEAR CHEMISTRY**
 2 Hours
 Introduction
 Radioactivity (alpha, beta and gamma rays)
 Half life process
 Nuclear reaction and transformation of elements

8. **CEMENT**
 2 Hours
 Introduction
 Composition and manufacture
 Chemistry of setting and hardening
 Special purpose cements

9. **GLASS**
 2 Hours
 Composition and raw material
 Manufacture
 Varieties and uses
10. **PLASTICS AND POLYMERS** 2 Hours
Introduction and importance
Classification
Manufacture
Properties and uses

11. **PAINTS, VARNISHES AND DISTEMPER** 2 Hours
Introduction
 Constituents
 Preparation and use

12. **CORROSION** 2 Hours
Introduction with causes
Types of corrosion
Rusting of iron
Protective measures against corrosion

13. **REFRACTORY MATERIALS AND ABRASIVE** 2 Hours
Introduction to refractories
Classification of refractories
Properties and uses
Introduction to abrasives
Artificial and natural abrasives and their uses

14. **ALLOYS** 2 Hours
Introduction with need
Preparation and properties
Some important alloys and their composition
Uses

15. **FUELS AND COMBUSTION** 2 Hours
Introduction of fuels
Classification of fuels
Combustion
Numerical problems of combustion
16. **LUBRICANTS**

 Introduction

 Classification

 Properties of lubricants

 Selection of lubricants

17. **POLLUTION**

 The problems and its dangers

 Causes of pollution

 Remedies to combat the hazards of pollution
INSTRUCTIONAL OBJECTIVES

1. UNDERSTAND THE SCOPE, SIGNIFICANCE AND FUNDAMENTAL ROLE OF THE SUBJECT

Define chemistry and its important terms
State the units of measurements in the study of chemistry
Write chemical formula of common compounds
Describe types of chemical reactions with examples

2. UNDERSTAND THE STRUCTURE OF ATOMS AND ARRANGEMENT OF SUB ATOMIC PARTICLES IN THE ARCHITECTURE OF ATOMS

Define atom
State the periodic law of elements
Describe the fundamentals sub atomic particles
Distinguish between atomic no. And mass no. Isotopes and isobars
Explain the arrangements of electrons in different shells and sub energy levels
Explain the grouping and placing of elements in the periodic table

3. UNDERSTAND THE NATURE OF CHEMICAL BOND

Define chemical bond
Describe the nature of chemical bond
Differentiate between electrovalent and covalent bonding
Explain the formation of polar and non-polar, sigma and pi-bond with examples
Describe the nature of coordinate bond with examples

4. UNDERSTAND THE CHEMICAL NATURE OF WATER

Describe the chemical nature of water with its formula
Describe the general impurities present in water
Explain the causes and methods to removing hardness of water
Express hardness in different units like mg / liter, p.p.m, degrees Clark and degrees French
Describe the formation and nature of scales in boiler feed water
Explain the method for the treatment of scales
Explain the sewage treatment and desalination of sea water
5. **UNDERSTAND THE NATURE OF ACIDS, BASES AND SALTS**
 Define acids, bases and salts with examples
 State general properties of acids and bases
 Differentiate between acidity and basicity and use the related terms
 Define salts, state their classification with examples
 Explain p-h value of solution and ph-scale

6. **UNDERSTAND THE PROGRESS OF OXIDATION AND REDUCTION**
 Define oxidation
 Explain the oxidation process with examples
 Define reduction
 Explain reduction process with examples
 Define oxidizing and reducing agents and give at least six examples of each
 Define oxides
 Classify the oxides and give examples

7. **UNDERSTAND THE FUNDAMENTALS OF NUCLEAR CHEMISTRY**
 Define nuclear chemistry and radio activity
 Differentiate between alpha, beta and gamma particles
 Explain half life process
 Explain at least six nuclear reactions resulting in the transformation of some elements
 State important uses of isotopes

8. **UNDERSTAND THE MANUFACTURE, SETTING AND HARDENING OF CEMENT**
 Define Portland cement and give its composition
 Describe the method of manufacture
 Describe the chemistry of setting and hardening of cement
 Distinguish between ordinary and special purpose cement
9. UNDERSTAND THE PROCESS OF MANUFACTURE OF GLASS
 Define glass
 Describe its composition and raw materials
 Describe the manufacture of glass
 Explain its varieties and uses

10. UNDERSTAND THE NATURE AND IMPORTANCE OF PLASTIC AND POLYMERS
 Define plastics and polymers
 Explain the mechanism of polymerization
 Describe the preparation and uses of some plastic / polymers

11. KNOW THE CHEMISTRY OF PAINTS, VARNISHES AND DISTEMPERS
 Define paints, varnishes and distemper
 State composition of each
 State methods of preparation of each and their uses

12. UNDERSTAND THE PROCESS OF CORROSION WITH ITS CAUSES AND TYPES
 Define corrosion
 Describe different types of corrosion. State the causes of corrosion
 Explain the process of rusting of iron
 Describe methods to prevent / control corrosion

13. UNDERSTAND THE NATURE OF REFRACTORY MATERIALS ABRASIVE
 Define refractory materials
 Classify refractory materials
 Describe properties and uses of refractory
 Define abrasive
 Classify natural and artificial abrasives
Describe uses of abrasives.

14. **UNDERSTAND THE NATURE AND IMPORTANCE OF ALLOYS**
 - Define alloy
 - Describe different methods for the preparation of alloys
 - Describe important properties of alloys
 - Enlist some important alloys with their composition, properties and uses

15. **UNDERSTAND THE NATURE OF FUELS AND THEIR COMBUSTION**
 - Define fuels
 - Classify fuels and make distinction of solid, liquid and gaseous fuels
 - Describe important fuels
 - Explain combustion
 - Calculate air quantities in combustion gases

16. **UNDERSTAND THE NATURE OF LUBRICANTS**
 - Define a lubricant
 - Explain the uses of lubricants
 - Classify lubricants and site examples
 - State important properties of oils, greases and solid lubricants
 - State the criteria for the selection of lubricant for particular purpose / job

17. **UNDERSTAND THE NATURE OF POLLUTION**
 - Define pollution (air, water, food)
 - Describe the causes of environmental pollution
 - Enlist some common pollutants
 - Explain methods to prevent pollution
LIST OF PRACTICAL:
1. Salt analysis
2. Acidic radicals
3. Dilute acid group
4. Concentrated acid group
5. Special group
6. Basic radicals
7. 1st group radicals
8. 2nd group radicals
 a. 2nd A
 b. 2nd B
9. 3rd group radicals
10. 4th group radicals
11. 5th group radicals
12. 6th group radicals
13. Analytical balance weighing techniques
14. Separation or salts by
 a. Sublimation process
 b. Filtration process
 c. Sedimentation process
15. Practical note book
16. Salt analysis scheme

RECOMMENDED BOOKS
1. Text Book of intermediate Chemistry (I & II)
2. Ilmi Applied Science by Sh. Atta Muhammad
3. Polytechnic Chemistry by J.N. Reedy Tata Mcgraw Hill (New Dehli)
4. Chemistry for Engineers by P.C. Jain (New Delhi, India)
COMP – 122 COMPUTER APPLICATIONS

Total Contact Hours 128 T P C
Theory 32 hours 1 3 2
Practical 96 hours

COURSE AIMS:

This subject will enable the student to be familiar with the operation of a Microcomputer. He will also learn DOS, BASIC language and word processing to elementary level.

COURSE CONTENTS

1. ELECTRONIC DATA PROCESSING 6 Hours
 Basics of computers
 Classification of computers
 Block diagram of a computer system
 Binary number system
 BIT, BYTE, RAM, ROM, EROM, EPROM
 Input and output devices
 Secondary storage media details
 Processors and types
 Using computer for system software
 Using computers for application software
 Common types of software and their application

2. DISK OPERATING SYSTEM (DOS) 6 Hours
 Internal commands
 External commands
 Batch files
 Advance features

2. BASIC LANGUAGE 10 Hours
 Introduction to high level language
 Introduction to BASIC
 REM statement
 Assignment statement
Input statement
Read data statement
If-then statement
If-then else statement
For next statement
DIM statement
L print statement
STOP statement
END statement
Logic of a BASIC programme
Running a BASIC programme
Saving and retrieving a programme
Advance features

3. WORD PROCESSING
Starting word processor session
Opening a document
Saving a document
Ending word processor session (temporarily)
Retrieving a document
Spell check
Margins and tab setting
Aligning paragraph
Printing a document
Advance features

4. COMPUTER GRAPHIC IN BASIC
Graphic fundamentals
Points and lines
Dots in space
A lightening blot
Shapes
Expanding circles and rectangles
RECOMMENDED BOOKS

1. Ron. S. Gottfrid, Programming with BASIC
2. Any word Processor Latest Released (e.g. Word, Word Perfect etc.)
3. ABC’s of DOS (latest release)
4. Judd Robbins, Mastering DOS 6.0 and 6.2
INSTRUCTIONAL OBJECTIVES

1. **UNDERSTAND ELECTRONIC DATA PROCESSING (EDP)**
 Know basics of computers
 Know classification of computers
 Know block diagram of a computer system
 Know binary number system
 Know some general terms used in computers
 Know input and output devices
 Know secondary storage media
 Explain processor and its types
 Know the use of computer for system software
 Know use of computers for application software
 Explain commonly used application of software

2. **UNDERSTAND RISK OPERATING SYSTEM (DOS)**
 Know internal command of DOS
 Know external commands of DOS
 Describe batch files
 Identify advanced features

3. **UNDERSTAND BASIC LANGUAGE**
 Explain high level languages
 Explain basic languages
 Describe ram statement
 Describe assignment statement
 Explain input statement
 Explain Read-Data statement
 Explain If-then statement
 Explain if-then else statement
 Explain for next statement
 Explain DIM statement
Explain LPRINT statement
Explain STOP statement
Explain END statement
Describe logic of basic program
Describe running a basic program
Describe saving and retrieving basic program
Describe some advance features of basic program

4. UNDERSTAND WORD PROCESSING SESSION
Describe word processing
Name command to be entered on DOS prompt to load word processor
Identify initial screen
Describe the command to open a document
Describe the procedure for naming the document
Explain importance of giving extension to a document
Describe saving and retrieving a document
Explain importance of saving the work at regular intervals
State temporary ending word processing session and document retrieval
State procedure to re-enter word processor
State procedure to re-open the document and editing
Describe spell check facility
Describe margins and tab setting
Describe to align paragraph
Describe re-editing techniques
Describe procedure to set up printer
Describe command for print outs
Explain multiple copy print out procedure
Explain some advance features
Describe procedure of condensed printing
Describe procedure for change of fonts
5. **UNDERSTAND PROGRAMMING INSTRUCTIONS FOR COMPUTER GRAPHIC IN BASIC LANGUAGE**

Identify graphic fundamentals in basic language
Draw points and lines
Draw dot in space
Draw lighting blot
Draw shapes
Draw expanding circles and rectangles

LIST OF PRACTICAL

DOS

1. Identify key board, mouse, CPU, disk drives, disks, monitor & printer
2. Practice for booting up of a computer system with DOS system disk and power off system at DOS prompt
3. Practice for CLS, VER, VOL, DATE & TIME commands
4. Practice for COPY, REN commands
5. Practice for DEL, TYPE, PATH, PROMPT, COPY CON, MD, CD, RD commands
6. Practice of the practical at Sr. No. 3, 4, 5.
7. Practice for FORMAT command with /s, /4, /u switches
8. Practice for DISKCOPY, DISKCOMP commands
9. Practice for PRINT, UNDELETE commands
10. Practice for the practical at Sr. No. 8, 9, 10, 11
11. Practice for creating a batch file

BASIC

1. Practice for loading & unloading BASIC software and identify role of function keys in basic.
2. Identify role of various keys in continuation with ALT keys in BASIC programming
3. Practice for CLS, LOAD, SVE, FILE, RENUM command by loading any existing BASIC program
4. Practice for editing any existing BASIC program
5. Prepare BASIC program to display sum of two numbers using INPUTS
6. Prepare BASIC program to display sum of two numbers using READ-DATA
7. Prepare BASIC program to multiply two numbers
8. Prepare BASIC program to calculate area of rectangle, when length and width are given
9. Prepare BASIC program to calculate area of circle when radius / diameter is given
10. Prepare very simple BASIC programs using IF-THEN-ELSE and FOR-NEXT statement
11. Identify DIM statement
12. Practice for LPRINT statement for various programs hard copy output

Word Processing
1. Practice for loading & unloading a word processor
2. Practice for creating document & saving it
3. Practice for spell check facility of the word processor
4. Practice for editing and existing document
5. Practice for various word processing menu options
6. Practice for margin and TAP setting and document alignment
7. Practice for some advance features
CHT – 153 BASIC CHEMICAL ENGINEERING

Total Contact Hours 160
Theory 64 hours
Practical 96 hours

COURSE AIMS:

The student will be able to understand the fundamental principles and concept in Chemical Engineering and apply them to solve the problems in practical situations and in evaluation of the direction for further development in the process.

COURSE CONTENTS

1. UNITS AND DIMENSIONS 8 Hours
 Primary and secondary quantities
 Dimensions of secondary quantities
 System of measurement
 Units and their conversion
 Conversion of units of following quantities into English / Metric system
 Pressure
 Viscosity
 Density
 Force
 Energy
 Work
 Gas constant
 Dimensional and dimension less formula.

2. GRAPH, TYPES OF GRAPH 8 Hours
 2.1 Drawing simple graph

3. PRODUCTION OF LOW TEMPERATURE BY REFRIGERATION 8 Hours
 Definition, methods of refrigeration
 Refrigerant and their properties
 Application of refrigeration
Schematic diagram of refrigeration
Working principles of refrigerator

4. PIPE AND TUBES 8 Hours
Types of pipes
Cast iron pipe, wrought iron pipe, steel pipe aluminum pipes, plastic
Pipe standards
Pipe fitting
Types of valves
Construction: working and application of gate valve

5. STEAM TRAP AND THEIR TYPES 8 Hours
 5.1 Bucket trap, expansion trap, inverted bucket trap, impulse trap

6. THERMAL INSULATION 8 Hours
Insulation material, properties and uses
Insulation techniques for stream pipes and vessels
Insulation techniques for low temperature pipes

7. SYMBOLS 4 Hours
Symbols for fitting
Symbols for equipments

8. PETROLEUM TESTS 8 Hours
Flash point, aniline point pour point, cloud point, diesel index,
Sedimentation number
Octane number

9. INTRODUCTION TO PHOTOCOPYING 4 Hours
INSTRUCTIONAL OBJECTIVES
1. UNITS AND DIMENSION

The student will know the primary and secondary quantities
Define primary quantity and secondary quantity
Give examples of primary quantities and secondary quantities
Understand dimensions of secondary quantities
Explain the secondary quantities in terms of primary quantities
Write the dimension of secondary quantities
Understand the systems of measurement
Name different systems of measurement
Name basic quantities of each system
Develop dimensions of derived quantities in each system
Understand units and their conversions
Developed units to measure the derive quantities in different systems
Define different units used
Convert the units of one system into the other system
Understand dimensional and dimensional formula
Differentiate between dimensional formula and dimensionless formula
Check the dimension of and engineering formula. Like;
Reynolds number potential energy. Kinetic energy

2. GRAPH

Understand the concept of graph
Define graph
Explain the types of graph
Give comparison between tabular and graphic representation of data
Understand the method of drawing to draw a graph
Explain the steps necessary to draw a graph
Draw a simple graph
Note the end point from a graph
Take reading from a graph
Make extrapolation and interpolation on a graph
3. PRODUCTION OF LOW TEMPERATURE BY REFRIGERATION

3.1 Know the methods of refrigeration
 3.1.1 Define the refrigeration
 3.1.2 Name the different methods of refrigeration based on the refrigeration used
 3.1.3 Compare different methods of refrigeration

3.2 Understand the refrigeration and their properties
 3.2.1 Define the refrigeration
 3.2.2 Name different refrigerants used in the field
 3.2.3 Enlist the properties of a good refrigerant

3.3 Understand the application of refrigeration
 3.3.1 Give domestic application of refrigeration
 3.3.2 Give industrial application of refrigeration

3.4 Understand schematic diagram of refrigeration
 3.4.1 Draw a schematic diagram of refrigeration
 3.4.2 Explain the function of each component in the diagram

3.5 Understand working principles of refrigeration
 3.5.1 Explain working principles of single fluid refrigerator
 3.5.2 Explain working principles of two fluid refrigerator

4. PIPES AND TUBES

 Know the types of pipes
 Enlist the types of pipes used by chemical industries
 Give the field of applications of different types of pipes used
 Give characteristics of different types of pipes used by chemical engineer

 Apply the pipe standards
 Understand the concept of schedule nos used for pipe
 Select the schedule no according to the pipe duty (pressure)

 Understand pipe fitting
Define pipe fitting
Enlist the different pipe fitting used
Explain the functions of different pipe fitting used in chemical industries
Know the types of valves
Define valve
Enlist the types of a valves
Understand construction and working of valves
Explain the construction and working of gate valve
Explain the construction and working of globe valve
Explain the construction and working of ball valve
Select a proper valve according to need

5. **STEAM TRAP**

Know the steam trap
Explain the function of steam trap
Enlist the types of steam traps
Understand different types of traps
Explain the construction and working of bucket trap
Explain the construction and working of inverted bucket trap
Explain the construction and working of expansion trap
Explain the construction and working of impulse trap

6. **THERMAL INSULATION**

Understand insulating materials, properties and uses
Define thermal insulation
Explain the need of thermal insulation
Enlist the insulating materials used in chemical industry
Enlist the properties of a good insulating materials
Apply the insulation techniques for steam pipes and valves
Explain the method of steam pipe insulation (lagging)
Calculate the thickness of insulation layer on steam pipe by using the formula
(q = KADT)
Understand insulation technique for low temperature pipes
Decide the nature of insulation material for low temperature pipes
Explain the method of pipe insulation

7. **SYMBOLS**
Understand symbols of fittings
Read symbols of fittings
Draw symbols to represent different fittings
Understand symbols for equipments
Read symbols of equipments
Draw symbols to represent different equipments and vassals of chemical engineering

8. **PETROLEUM TEST**
Understand different tests of petroleum
Understand the importance of petroleum testing
Define flash point, aniline point pour point and cloud point
Explain procedure to perform above tests for petroleum sample
Define diesels index
Explain procedure to find diesel index
Define sedimentation number
Explain method to note sedimentation no.
Define octane number and octane number determination method

9. **INTRODUCTION TO PHOTOCOPYING**
Understand the photocopying
Explain the concept of photocopying
Explain the methods of photocopying
Enlist the precautions to be observed while operating a photocopier
LIST OF PRACTICAL

1. Calculation of dimensions of different secondary quantities
2. Determination of units of different quantities in different measuring systems
3. Conversion of units in different systems
4. Drawing of simple graph
5. Graph reading
7. Pipe cutting
8. Pipe threading
9. Pipe fittings
10. Installation of valves
11. Insulation of steam traps
12. Insulation of steam pipe lines

RECOMMENDED BOOKS:

1. Manual for basic chemical engineering
3. Introduction to chemical engineering by watter L. Bedger and Julims T Bencharo
4. Introduction to chemical engineering by Little John
COURSE AIMS:

At the end of this course the student will be able to understand the fundamentals of engineering drawing used in the various fields of industry especially in the Mechanical Technology. The student will be familiarized with the use of conventional drawing instruments as well as the modern technology used for this subject. The CAD portion of the subject will provide the student the knowledge and use of computer in the subject of Engineering Drawing.

COURSE CONTENTS

SECTION – I ENGINEERING DRAWING

1. USES AND APPLICATIONS OF TECHNICAL DRAWING 1 Hours

 Technical drawing and the technician
 Use of technical drawing
 Common drawing forms
 Application of drawing forms
 Practices and conventions

2. DRAWING TOOLS AND ACCESSORIES 2 Hours

 Drawing pencil
 Drawing papers specifications
 Drawing instruments
 Use and care of drawing instruments and material

3. ALPHABET OF LINES USED IN DRAWING 2 Hours

 Importance of the alphabet of lines
 Common alphabet of lines
 Uses and correct line weight-age of the line
 Application of line
4. **LETTERING**
 2 Hours
 Importance of good lettering
 Single stroke of gothic
 Letter stroke
 Letter guide lines
 Vertical single stroke gothic
 Inclined single stroke gothic
 Composition of lettering

5. **DRAWING LINES TECHNOLOGY**
 2 Hours
 Introduction to sketching techniques
 Sketching lines
 Sketching circles and arcs
 Sketching ellipse
 Sketching views of objects

6. **GEOMETRICAL CONSTRUCTIONS**
 2 Hours
 Introduction to geometry
 Definition of terms
 Different conventional shapes, surfaces and objects
 Basic geometrical construction
 Construction, ellipse, parabola
 Involutes and cycloids

7. **INTRODUCTION TO MULTI VIEW PROJECTIONS**
 3 Hours
 Definition and concept of multi-view drawings
 Perceptual views of plan of projections
 Orthographic projections
 1st angle and 3rd angle projections
 Principle views
 Arrangement of views
 Multi-view drawings
8. **INTRODUCTION TO PICTORIAL DRAWINGS**

 Uses of pictorial

 Three types of pictorial views

 Isometric sketching of rectangular block

 Isometric sketching of arcs and circles

 Oblique sketching of rectangular block

 One point perspective sketching of rectangular block

 Two point perspective sketching of a rectangular block

 Preparation of pictorial drawings of simple objects

9. **BASIC DIMENSIONING**

 Definition of dimensioning

 Types of dimensioning

 Elements of dimensioning

 System of measurements

 Dimensioning multi-view drawings

 Dimensioning pictorial views

 Dimensioning rules and practices

 Notes and specification

10. **SECTIONING AND SECTIONAL VIEWS**

 Definition and purpose

 Cutting planes position and cutting plane lines

 Types of sectional views

 Conventional section lines of different materials

 Practice sectioned views

11. **DRAWING OF MACHINE ELEMENTS**

 Terminology and drawing of rivets and riveted joints

 Terminology and drawing of screw threads

 Terminology and drawing of keys and cotters

 Description and drawing of simple bearings

 Describe and drawing of simple coupling
SECTION – II COMPUTER AIDED DESIGN – I

12. CAD FUNDAMENTALS 2 Hours
 CAD and its importance
 Purposes
 Advantages

13. CAD SOFTWARE 2 Hours
 CAD abbreviations
 CAD help
 Coordination systems

14. BORDER TEMPLATE 2 Hours
 Drawing area
 SNAP & GRID
 P edit & Q save

15. TITLE BLOCK 2 Hours
 Change command
 Layer creation
 Zooming
 Types faces of CAD
 Plotting

16. LINES & CIRCLES 2 Hours
 Dedit
 Analyzed line drawing
 U & Redo command
 Drawing a circle
INSTRUCTIONAL OBJECTIVES

1. USES AND APPLICATIONS OF TECHNICAL DRAWING
 Know the uses of technical drawing
 Describe the importance of technical drawing from the point of view of a technician
 Explain the main uses of technical drawing from the point of view of a technician
 Recognizes the different application of technical drawing
 Identity commonly used drawing forms
 Illustrate the different drawing forms
 Differentiate different drawing forms
 Develop technical vocabulary

2. KNOW THE COMMON DRAWING TOOLS AND ACCESSORIES
 Identify the uses of different pencils for technical drawing
 Identify different paper sizes for drawing
 Identify different types of papers suitable for drawing
 Identify different types of erasers and their uses
 Maintain a will sharpened pencil for drawing
 Describe the drawing instruments
 State the use of drawing instruments

3. UNDERSTAND THE IMPORTANCE OF ALPHABET, CORRECT WEIGHT AGE AND APPLICATION OF LINES USES IN TECHNICAL DRAWING
 3.1 Knows the importance of lines
 3.2 Knows the alphabet of lines
 3.3 Identify the lines characteristics of each alphabet of lines
 3.4 Draw horizontal, vertical and inclined lines
 3.5 Draw alone line with correct weight ages
4. **APPLIES THE GOOD LETTERING ON A DRAWING**
 - Knows the importance of lettering in a technical engineering drawing
 - Identify the letter style and guide lines
 - State letter strokes and guide lines
 - Perform better stroke in single stroke gothic
 - Print vertical single stroke letters and numbers
 - Print incline single stroke letters and numbers
 - Observe stability and pleasing appearance of letters in printing

5. **UNDERSTAND SELECTING OF CIRCLES, ARCS AND VIEWS OF OBJECTS**
 - Draw circular an arc using circular line method
 - Draw a circular arc using square method
 - Draw an ellipse using rectangular method
 - Draw views of simple objects

6. **APPLY DRAWING SKILL WITH THE AID OF DRAWING INSTRUMENTS IN GEOMETRICAL CONSTRUCTION**
 - Define common terms used in geometrical construction
 - Explain different geometrical shapes. Surface of objects
 - Draw basic geometrical construction
 - Draw involutes, cycloid, spiral, and tangent to circle and arc.

7. **UNDERSTAND THE MULTI VIEW OF PROJECTIONS SPECIFIC OBJECTIVES**
 - Define the concept of multi view drawings
 - Knows principles planes of projections
 - Knows the orthographic method of projection
 - Explain the 1st and 3rd angle projections
 - State six principle views
 - Practice multi view projections

8. **APPLY THE USE, TYPES AND METHODS OF PICTORIAL VIEWS**
 - Knows the use of pictorial views
 - Knows the pre requisite of pictorial drawings
State three types of pictorial drawings
Draw isometric view of rectangular blocks, arcs, circles
Draw oblique sketching of rectangular blocks
Draw one point perspective view of a rectangular block
Draw two point perspective view of a rectangular block
Prepare / draw pictorial drawings of simple objects

9. APPLY GOOD DIMENSIONING ON MULTI-VIEWS AND PICTORIALS
Define dimensioning
Identify the types of dimensioning
Enlist the elements of dimensioning
Identify the system of measurements
Indicate complete dimension on multi-view drawings
Indicate complete dimension or pictorial drawings
Follow the general rules for dimensioning
Indicate notes and specification or multi-view drawings

10. APPLY THE SECTIONING METHODS OF MATERIAL AND DRAW SECTIONAL VIEWS
Define sectioning and its purpose
Describe cutting planes and lines
State types of sectional views
Explain conventional section lines of different materials
Practice sectioning

11. APPLY DRAWING METHODS TO DRAW MULTI-VIEWS OF MACHINE ELEMENTS
Draw multi-views of vee-block
Draw multi-views of gland
Draw keys and cotters
Draw multi-views of simple bearing
SECTION – II COMPUTER AIDED DESIGN

12. UNDERSTAND CAD FUNDAMENTALS

- Define CAD
- Describe importance of CAD
- States purpose of CAD
- Explain advantages of CAD
- Explain importance of CAD use age in industry

13. UNDERSTAND CAD SOFTWARE

- Describe computer system requirements for CAD (e.g. Auto CAD release 12 or latest)
- State procedure of giving command to CAD
- State CAD (e.g. Auto CAD rel. 12 or latest) abbreviations
- State use of function keys
- Describe procedure of giving commands with a mouse
- Explain procedure of getting general help for a specific command
- Explain drawing cursor and co-ordination read out
- Explain Cartesian notion
- Explain polar notation

14. UNDERSTAND BORDER TEMPLATE OF DRAWING

- Describe setting up of drawing area
- Describe setting of displayed digits
- Explain changing the drawing limits
- Explain use of grid system (Auto CAD rel-12 or latest)
- Explain adjustment of drawing scale
- Explain procedure of drawing line with line command
- Explain p-edit command for widening boarder
- Explain procedure of saving boarder template

15. UNDERSTAND ADDING A TITLE BLOCK TO THE BORDER DRAWING

- Describe checking the drawing time
- Explain change command
Explain creation of layer for title block
Explain procedure of creating a title block
Explain zoom command
Explain importance of saving a drawing
Explain use of CAD (Auto CAD R-12 or latest)
Explain filling in the title block by writing drawing title, name etc.
Explain procedure of plotting drawing on a plotter or printer
Explain Q-save command

16. UNDERSTAND DRAWING LINES AND CIRCLES

State beginning of a new drawing
Explain D-edit command (Auto CAD R-12 or latest)
Describe viewing the entire drawing
Explain drawing of angled line
Explain U-command
Explain Redo command
Explain drawing a circle with circle command
Explain automatic work saving procedures
LIST OF PRACTICAL:

A. (BASIC ENGINEERING DRAWING)

1. Lettering 5mm height
2. Lettering 3mm height
3. Use of tee square and set squares for drawing horizontal, vertical and inclined lines
4. Use of tee square and for drawing centers, crossing of lines
5. Use of compass, circles, half circles, radius
6. Draw round corners, figure inside and outside circle
7. Plane geometry angles and triangles
8. Plane geometry quadrilateral square, rhombus, rectangle and parallelogram
9. Plane geometry parallel-lines, perpendicular, bisect line and angle
10. Plane geometry equal division of line and some radius with the help of compass and set square
11. Plane geometry of inscribe and circumscribe square, triangle and hexagon
12. Plane geometry of construction of polygon, five, six, seven and eight sides
13. Plane geometry of inscribe pentagon in a circle and pentagon by general and different methods
14. Plane geometry of tangent of circle inside and outside
15. Plane geometry of construction of ellipse with two methods
16. Plane geometry of construction of ellipse with next two methods
17. Plane geometry of construction of parabola curve 4 methods
18. Plane geometry of construction of hyperbola curve
19. Plane geometry of spiral curve
20. Plane geometry of helix curve
21. Plane geometry of construction of involutes curve of square rectangle, hexagon and circle
22. Different types of drawing lines
23. Orthographic projection 1st and 3rd angle L block
24. Orthographic projection 1st and 3rd angle step block
25. Orthographic projection 1st and 3rd angle Vee block
26. Orthographic projection 1st and 3rd angle given block
27. Orthographic projection 1st and 3rd angle additional block
28. Orthographic projection and isometric drawing given block
29. Orthographic projection and isometric drawing given block next
30. Different types of sectioning
31. Different section lines for different material
32. Orthographic projection of vee block sectional views
33. Orthographic projection Gland sectional views
34. Orthographic projection open bearing sectional views
35. Concept for different types of drawings
36. Isometric and oblige drawings of cube with one hole
37. Isometric and oblige drawings of another given block
38. Missing lines and positions on given views
39. Missing lines and positions on given views next
40. Isometric scale and development of cube
41. Development of prism
42. Development of cylinder
43. Development of cone
44. Development of pyramid
45. Thread profile of square and vee threads
46. Different types of threads
47. Sketch of hexagonal nut and bolt
48. Rivet heads
49. Single riveted lap joint
50. Single riveted but joint
B. COMPUTER AIDED DESIGN (AUTO CAD REL – 12 OR LATEST)

1. Practice loading CAD software into computer memory
2. Practice unloading CAD software safety and cone to DOS prompt
3. Practice CAD abbreviations, auto CAD release 12 of latest (e.g. A for Arc, C for circle, E for Erase etc.)
4. Practice functions for short cuts
5. Practice to draw two points using Cartesian notation on graph paper
6. Practice to draw straight line using polar coordinates on graph paper
7. Set up drawing area using CAD software
8. Practice for turning GRID ON and OFF and SNAP on and OFF
9. Draw a line with line command
10. Widen border lines with pedit
11. Save border template (Q-Save)
12. Create layers and move border to it's own layer
13. Create a layer for title block
14. Create title block
15. Practice for zoom command
16. Practice for CAD type face (Auto CAD Rel. 12 or latest)
17. Practice for filling title block
18. Practice for plotting the drawing on plotter or printer
19. Begin a new drawing
20. Practice with Dedit command to make changes in the drawing
21. Draw an angled line
22. Practice with U-command and Redo command
23. Draw a circle with circle command
RECOMMENDED BOOKS:

1. Z.H. Syed
 "Fundamentals of Construction"
2. Surrender Singh
 "Engineering Materials"
3. N. Chaudary
 "Building Materials"
4. M.A. Zaman
 "Engineering Materials"
5. Kulkarne
 "Building Construction"
6. Arora and Gupta
 "Building Construction"
7. Mitchell
 "Building Construction"
8. Mckay
 "Building Construction"
9. French Wirk
 "Engineering Drawing"
10. Alan R. Miller
 "ABC’s of Auto CAD Release - 12"
SECOND YEAR
GCT 223 WORKSHOP TECHNIQUES

Total Contact Hours 128
Theory 32 T P C
Practical 96

COURSE AIM

This course enables the students to have the hands-on experience regarding electrification, welding, lathe Machine and general tools involved in industrial practices. Such practical working will formulate the professionalism in true spirit.

COURSE CONTENTS

1. ELECTRIC WIRING AND CIRCUITS 08 HOURS
 1.1 Wires and their gauges
 1.2 Circuits and their types
 1.3 Different electric circuits

2. LATHE MACHINE AND TOOLS UTILITY 08 HOURS
 2.1 Lathe Machine and its parts
 2.2 Structure and its functions
 2.3 Drilling
 2.4 Making holes
 2.5 Drill chuck keys
 2.6 Operation of lathe machines
 2.7 Miscellaneous tools and utilities

3. WELDING WORKS 08 HOURS
 3.1 Fuel medium for welding
 3.2 Welding apparatus
 3.3 Welding operations
 3.4 Utility of Welding in ceramics industry
4. GENERAL TOOL KIT AND ITS APPLICATIONS 08 HOURS
 4.1 Plain tool kit
 4.2 L & N keys
 4.3 Utility of tools

INSTRUCTIONAL OBJECTIVES

1. ELECTRIC WIRING AND CIRCUITS
 1.1 Explain different wires and their gauges
 1.2 Explain different Circuits and their types
 1.3 Explain different electric circuits and their formation.

2. LATHE MACHINE AND TOOLS UTILITY
 2.1 Describe Lathe Machine and its parts
 2.2 Describe the Structure and functions of Lathe Machine.
 2.3 Describe the drilling by using Machine.
 2.4 Describe the making of holes
 2.5 Describe the Drill chuck keys
 2.6 Describe the Operation of lathe machines
 2.7 Describe the Miscellaneous tools and utilities

3. WELDING WORKS
 3.1 Explain Fuel medium for welding
 3.2 Explain the welding apparatus
 3.3 Explain the welding operations
 3.4 Explain the Utility of Welding in ceramics industry

4. GENERAL TOOL KIT AND ITS APPLICATIONS
 4.1 Describe the Plain tool kit
 4.2 Describe the L & N keys
 4.3 Describe the Utility of tools
LIST OF PRACTICAL

1. To make a hole of 3 Cm in a shaft.
2. To make a screw shaft
3. To make a metal die for pressing
4. To demonstrate the lightening of one bulb with one switch.
5. To demonstrate the lightening of one bulb with two switches.
6. To demonstrate the lightening of two bulbs with one switch.
7. To demonstrate the working of a fuse.
8. Joining of two cylinders by welding.
10. Utility of different tool kits in ceramics industry.
GCT 213 GLASS Technology

Total Contact Hours 160
Theory 64
Practical 96

COURSE AIM

The aim of this Course is to give comprehensive knowledge to the students regarding typical raw materials used and their availability in Pakistan. Also it provides information about typical composition of glass and effect of various oxides there on. This course also gives information regarding batch calculations and steps involved during glass preparation.

COURSE CONTENTS

A.

1. **Feldspar**

 Kinds of feldspar mineral; feldspar as a source of alumina; Melting temperature of feldspar and availability in Pakistan.
 3 Hours

2. **Glass Sand**

 Importance of glass sand, Impurities present in glass sand; forms of Silica.
 3 Hours

3. **Limestone**

 Importance of Limestone, availability in Pakistan.
 3 Hours

4. **Dolomite**

 Availability in Pakistan, Chief Source of Magnesium Oxide MgO.
 3 Hours

5. **Cryolite**

 Use in glass, effect on viscosity

6. **Red Lead**

 Use in glass

7. **Quartz**

 Availability in Pakistan, Sandstone.
 3 Hours

8. **Soda Ash**

 Importance of soda Ash, Availability in Pakistan.
9. **Potassium Carbonate**
Main Source of K₂O, Manufacture of Potassium Carbonate Impurities in Potassium Carbonates

10. **Potassium Nitrate and Potassium Hydroxide**
Main Source of K₂O, Manufacture of Potassium Carbonate Impurities in Potassium Carbonates

11. **Decolorizer**

12. **Colorants**
13. **Refining Agents**
14. **Cullet**

15. **Phosphate Compounds**
16. **Zirconium**
17. **Calumet**
18. **Barium Compounds. Etc**

B.
1. **Composition of Various Glasses**
Sheet Glass, Flat Glass, Plate Glass, Float Glass, Neutral Glass

2. **Effect of Metallic Oxide**
Effect of Iron Oxide effect of titanium oxide, Effect of Chromium Oxide, Effect of Sb₂O₃, PB₂O₃, Effect of cobalt oxide, effect of selenium, etc

8 Hours

C. **Batch Calculation**

D. **Preparation of Glass Batch**
Storage of Raw materials, Removal of impurities, Sand washing, Screw conveyors, Belt Conveyors, Bucket Elevators, Weighing and mixing, Addition of Cullet, Conveying to furnace, variable speed motor

10 Hours
Instructional Objectives

1. **Feldspar**
 1.1 Explain the kind of Feldspar and the effect of heat, use as flux, oxide obtained from feldspar, use of feldspar in glass composition, availability of feldspar in Pakistan.

2. **Glass Sand**
 2.11 Describe the oxide obtained from the silica sand.
 2.12 Describe the amount which can be used in glass composition
 2.13 Describe the impurities present in glass sand and their effect on glass
 2.14 Explain the sources of glass sand in Pakistan
 2.15 Describe various form of silica

3. **Limestone**
 3.11 Define Lime Stone
 3.12 Name the Oxide obtained from Lime stone and its effect on the melting of Glass
 3.13 Availability of Lime Stone in Pakistan w.r.t Glass Industry

4. **Dolomite**
 4.11 Describe Dolomite
 4.12 Availability of Dolomite Stone in Pakistan w.r.t Glass Industry
 4.13 Why Used in glass
 4.14 Explain the calcinations and double carbonate.

5. **Cryolite**
 5.1 Describe Cryolite
 5.2 Sources of Cryolite
 5.3 Discuss availability in Pakistan

6. **Red Lead**
 6.11 Explain the Source of PbO
 6.12 Explain the Availability
 6.13 Explain the use of Lead Silicate
 6.14 Describe the effect of PbO on glass melting and its properties.
7- Quartz
7.11 Describe the properties of Quartz mineral.
7.12 Availability of Quartz in Pakistan
7.13 Study the effect of Quartz in glass and the properties of glass

8- Soda Ash
8.11 Differentiate b/w Soda and Soda Ash
8.12 Sources of Soda
8.13 Explain effect of melting and the other properties of Glass

9- Potassium Carbonate
9.11 Describe as main source of K2O.
9.12 Explain the manufacturing of Potassium carbonate
9.13 Describe impurities present in the salt
9.14 Explain the effect of Potash on the properties of glass

10- Potassium nitrate and Hydroxide
10.11 Describe as source of Potash
10.12 Explain the manufacturing of the salts.
10.13 Describe impurities present in the salt
10.14 Explain the effect of Potash on the properties of glass

11- Barium Compound
11.11 Describe the Compound
11.12 Source of BaO
11.13 Describe preparation of carbonate from sulfate.
11.14 Use of BaSO4 as BaO
11.15 Describe effect of BaO on the properties of Glass

12- Phosphate Compound
✓ Describe various phosphate compounds

13- Zirconium Compound
13.11 Describe the use of Zirconia in glass
13.12 Discuss its effect on melting and properties of glass

14- Calumite
14.11 Define Calumite
14.12 Describe its use in glass and its effects

15- **Decolorizer**
 15.11 Describe the various decolorizer used in glass batch

16- **Refining Agent**
 16.11 Define Refining Agent
 16.12 Chemistry of Refining Agent
 16.13 Various oxide used as refining agents

17- **Cullet**
 17.11 Describe Cullet
 17.12 Describe the Factory and Foreign cullet
 17.13 Describe washing and use in glass batch

B. Composition of various Glasses

1.1. Define Glass
1.2. Describe glass formers, Fluxes and stabilizers
1.3. Define Container Glass and various compositions
1.4. Define Heat resistant glass and explain its composition
1.5. Define Fiber glass and explain its composition
1.6. Explain the difference b/w sheet and plate glass
1.7. Define Neutral glass and explain its composition
1.8. Describe its uses

2. Effect of Metallic Oxide

2.1 Explain the effect and behavior of iron oxide on composition
2.2 Explain the effect and use of Titanium oxide on Glass composition
2.3 Explain the effect and use of Chromium oxide on Glass composition
2.4 Explain the effect and use of Refining agent on Glass composition
2.5 Explain the effect and use of Cobalt oxide on Glass composition
3. **Batch Calculations**

3.1 Explain composition of batch from the given composition
3.2 Explain calculation of glass composition from given batch
3.3 Familiarization with different examples

4. **Preparation of Glass Batch**

4.1 Describe how raw materials are loaded and unloaded
4.2 Describe drying and washing of Silica sand
4.3 Describe Crushing and grinding of raw material w.r.t glass industry
4.4 Beneficiation of Silica sand
4.5 Describe the construction and working of screw and belt conveyor
4.6 Explain the construction and working of Bucket Elevators
4.7 Describe the weighting and mixing of major and minor ingredients
4.8 Describe how cullet is added
4.9 Explain the amount of cullet to be added
4.10 Describe the conveying of mixed batch to glass furnace
4.11 Explain the working of batch charger and Variable speed motor
COURSE AIM

The objective of this course is to provide absolute knowledge of size reduction and mixing processes and equipments. Simultaneously it will also focus on the types, compositions and effects of various glazes. Lastly, this course will enable the students to diagnose and overcome different glaze defects. It will also give information of various ceramics products.

COURSE CONTENTS

PAPER-A

1. PARTICLES SIZE REDUCTION AND CONTROL / GRADATION OF RAW MATERIAL 16 HOURS

1.1 Theories
 1.1.1 Impact attrition and collision
 1.1.2 Kick’s, Bond’s and Rittinger’s Laws
 1.1.3 Principles of Fracture
 1.1.4 Comparing efficiencies with other processes (distillation drying etc)
 1.1.5 Particle size analysis
 1.1.5.1 Taylor Sieves
 1.1.5.2 ASTM Sieves
 1.1.5.3 Gravity Sedimentation
 1.1.5.4 Centrifuge

2. MIXING METHODS 10 HOURS

 2.1 Blunger
 2.2 Pug mill
 2.3 U-Mixer
 2.4 Muller Mixer

3. CHANGE DURING FIRING 16 HOURS

 3.1 Thermal Decomposition
3.2 Clays and other Alumini-slicate oxides, Hydroxides, Carbonates,
3.3 Other ceramic raw materials
3.4 DTA and TGA
3.5 Changes in a Ceramic body
3.5.1 Water smoking
3.5.2 Dehydration
3.5.3 Decomposition
3.5.4 Oxidation
3.5.5 Reduction
3.6 Sintering
3.6.1 Solid State Sintering
3.6.2 Sintering in the presence of a liquid phase
3.6.3 Grain growth
3.6.4 Vitrification
3.6.5 Nucleation
3.6.6 Crystallization
3.7 Microstructure
3.7.1 Development of Microstructure in relation to sintering
3.7.2 Typical Ceramic Microstructure and their control

4. CERAMIC PRODUCTS. 6 HOURS
4.1 Ceramic building materials
4.2 Ceramics in the home.
4.3 Chemical and technical ceramics
4.4 Specialized laboratory and engineering ware
4.5 Ceramics in the Electrical industry
4.6 Insulators.
GLAZES

1- THE NATURE OF GLASS AND GLAZES. 4 HOURS
 1.1 Silica as the Basis of Glass.
 1.2 Making of Glass (Brief).
 1.3 The Distinction between Glass and Glazes.

2- EARLY TYPES OF GLAZES. 6 HOURS
 2.1 Early lead Glazes.
 2.2 Ash Glazes.
 2.3 Slip Glazes.
 2.4 Feldspathic Glazes.
 2.5 Salt Glazes.

3- THE OXIDES AND THEIR FUNCTION IN GLAZE FORMING. 8 HOURS
 3.1 Oxidation and the oxides.
 3.2 The Glaze oxides.
 3.3 The function of the oxides in glazes.
 3.4 How glazes melt in the kiln.
 3.5 Silica SiO2.
 3.6 Alumina Al2O3.
 3.7 Sodium oxide Na2O
 3.8 Potassium oxide K2O
 3.9 Lead Oxide PbO
 3.10 Calcium oxide CaO.
 3.11 Barium oxide BaO.
 3.12 Magnesium oxide MgO.
 3.13 Zinc oxide ZnO.
 3.14 Strontium oxide SrO.
 3.15 Antimony oxide Sb2O3
 3.16 Lithium oxide Li2O
 3.17 Boric oxide B2O3

4- GLAZE MATERIALS. 6 HOURS
Glass, Ceramics & Pottery

4.1 Flint SiO₂
4.2 Clay Al₂O₃ 2SiO₂ .2H₂O
4.3 Feldspar
4.4 Whiting CaCO₃
4.5 Magnesium Carbonate MgCO₃
4.6 Dolomite CaCO₃ .MgCO₃
4.7 Barium Carbonate BaCO₃
4.8 Talc (3MgO 4SiO₂ H₂O)
4.9 Strontium carbonate SrCO₃
4.10 Litharge PbO
4.11 White lead 2PbCO₃Pb(OH)₂
4.12 Red lead Pb₃O₄
4.13 Zinc Oxide ZnO
4.14 Antimony Oxide Sb₂O₃
4.15 Soda Ash or sodium carbonate Na₂CO₃

5- THE COMPOSITION OF GLAZES. 6 HOURS
5.1 Fusion Points of Glazes
5.2 Fluxing Action of the various oxides.
5.3 The amounts of silica and alumina in glazes.

6- TYPES OF GLAZES. 6 HOURS
6.1 Low temperature alkaline glazes.
6.2 Lead glazes.
6.3 Glazes containing boron.
6.4 Bristol glazes.
6.5 Porcelain and stoneware glazes.

7- GLAZE DEFECTS, THEIR CAUSES AND CURES 6 HOURS

8- CERAMIC COLORS & STAINS 6 HOURS
8.1 Colors in Glazes
8.2 Red, Pink, Green, Blue and Black Colors
8.3 Their manufacture & effects on the Glaze and Bodies
8.4 Over-Glaze colors
8.5 Under-Glaze colors
8.6 Manufacturing of stains
8.7 Uses of stains

RECOMMENDED BOOKS

2. Read, H.H. “Rutley’s Elements of mineralogy” Thomas murley 1948
INSTRUCTIONAL OBJECTIVES

PAPER-A

1. PARTICLES SIZE REDUCTION AND CONTROL / GRADATION OF RAW MATERIAL 16 HOURS

1.2 Understand the theories of particles size reduction
1.1.1 Explain Impact attrition and collision
1.1.2 Explain Kick’s, Bond’s and Rittinger’s Laws
1.1.3 Describe Principles of Fracture
1.1.4 Describe efficiency of size reduction process
1.1.5 Describe the methods of Particle size analysis of the following sieves:
 1.1.5.1 Taylor Sieves
 1.1.5.2 ASTM Sieves
 1.1.5.3 Gravity Sedimentation
 1.1.5.4 Centrifuge

2. MIXING METHODS 10 HOURS

2.1 Explain the technology of mixing of raw materials by the following machines:
 2.1.1 Blunger
 2.1.2 Pugmill
 2.1.3 U-Mixer
 2.1.4 Muller Mixer

3. UNDERSTAND CHANGE DURING FIRING

3.1 Thermal Decomposition
3.2 Clays and other Alumini-slicate oxides, Hydroxides, Carbonates,
3.3 Other ceramic raw materials
3.4 DTA and TGA
3.5 Changes in a Ceramic body
 3.5.1 Water smoking
 3.5.2 Dehydration
 3.5.3 Decomposition
 3.5.4 Oxidation
 3.5.5 Reduction
3.6 Sintering
 3.6.1 Solid State Sintering
 3.6.2 Sintering in the presence of a liquid phase
 3.6.3 Grain growth
 3.6.4 Vitrification
 3.6.5 Nucleation
Glass, Ceramics & Pottery

3.6.6 Crystallization

3.7 Microstructure
 3.7.1 Development of Microstructure in relation to sintering
 3.7.2 Typical Ceramic Microstructure and their control

4. CERAMIC PRODUCTS. 6 HOURS

4.1 Describe Ceramic building materials
4.2 Explain the Ceramics in the home.
4.3 Explain the Chemical and technical ceramics
4.4 Explain the role of specialized laboratory and engineering ware
4.5 Explain the role of Ceramics in the Electrical industry
4.6 Explain the Insulators and their manufacturing

GLAZES

1. THE NATURE OF GLASS AND GLAZES.
 1.1 Describe the Silica as the Basis of Glass.
 1.2 Describe the Making of Glass in Brief.
 1.3 Describe the Distinction between Glass and Glazes.

2. EARLY TYPES OF GLAZES.
 2.1 Explain Early lead Glazes and their compositions.
 2.2 Explain Ash Glazes and their compositions.
 2.3 Explain Slip Glazes and their compositions.
 2.4 Explain Feldspathic Glazes and their compositions.
 2.5 Explain Salt Glazes and their compositions.

3. THE OXIDES AND THEIR FUNCTION IN GLAZE FORMING.
 3.1 Define and explain the Oxidation and the oxides.
 3.2 Define and explain the Glaze oxides.
 3.3 Describe the function of the oxides in glazes.
 3.4 Describe how glazes melt in the kiln.
 3.5 Describe the effect of Silica SiO\(_2\) on glaze forming.
 3.6 Describe the effect of Alumina Al\(_2\)O\(_3\) on glaze forming.
 3.7 Describe the effect of Sodium oxide Na\(_2\)O on glaze forming.
3.8 Describe the effect of Potassium oxide K_2O on glaze forming.
3.9 Describe the effect of Lead Oxide PbO on glaze forming.
3.10 Describe the effect of Calcium oxide CaO on glaze forming.
3.11 Describe the effect of Barium oxide BaO on glaze forming.
3.12 Describe the effect of Magnesium oxide MgO on glaze forming.
3.13 Describe the effect of Zinc oxide ZnO on glaze forming.
3.14 Describe the effect of Strontium oxide SrO on glaze forming.
3.15 Describe the effect of Antimony oxide Sb_2O_3 on glaze forming.
3.16 Describe the effect of Lithium oxide Li_2O on glaze forming.
3.17 Describe the effect of Boric oxide B_2O_3 on glaze forming.

4. GLAZE MATERIALS.
4.1 Explain the character of Flint SiO_2 as glaze material.
4.2 Clay $Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$ Explain the character of Flint SiO_2 as glaze material.
4.3 Feldspar Explain the character of Flint SiO_2 as glaze material.
4.4 Explain the character of Whiting $CaCO_3$ as glaze material.
4.5 Explain the character of Magnesium Carbonate $MgCO_3$ as glaze material.
4.6 Explain the character of Dolomite $CaCO_3 \cdot MgCO_3$ as glaze material.
4.7 Explain the character of Barium Carbonate $BaCO_3$ as glaze material.
4.8 Explain the character of Talc (3MgO 4SiO_2 H_2O) as glaze material.
4.9 Explain the character of Strontium carbonate $SrCO_3$ as glaze material.
4.10 Explain the character of Litharge PbO as glaze material.
4.11 Explain the character of White lead $2PbCO_3Pb(OH)_2$ as glaze material.
4.12 Explain the character of Red lead Pb_3O_4 as glaze material.
4.13 Explain the character of Zinc Oxide ZnO as glaze material.
4.14 Explain the character of Antimony Oxide Sb_2O_3 as glaze material.
4.15 Explain the character of Soda Ash or sodium carbonate Na_2CO_3 as glaze material.
5. **THE COMPOSITION OF GLAZES.**
 5.1 Define Fusion point and explain Fusion Points of Glazes
 5.2 Define Fluxing action and describe the Fluxing Action of various oxides.
 5.3 Explain the variation in the amounts of silica and alumina in glazes.

6. **TYPES OF GLAZES.**
 6.1 Describe Low temperature alkaline glazes.
 6.2 Describe Lead glazes and their behavior.
 6.3 Describe Glazes containing Boron and their behavior.
 6.4 Describe Bristol glazes and their behavior.
 6.5 Describe Porcelain and stoneware glazes and their behavior.

7. **DESCRIBE DIFFERENT GLAZE DEFECTS, THEIR CAUSES AND CURES**

8. **CERAMIC COLORS & STAINS**
 8.1 Describe the Colors in Glazes
 8.2 Describe the manufacture of Red, Pink, Green, Blue and Black Colors and their effects on the Glaze and Bodies
 8.3 Describe the Over-Glaze colors
 8.4 Describe the Under-Glaze colors
 8.5 Describe the Manufacturing of stains
 8.6 Describe the Uses of stains

9. **CERAMIC PRODUCTS.**
 9.1 Explain the nature and results of Ceramic building materials
 9.2 Explain the Ceramics in the home and its utility in daily life.
 9.3 Explain the Chemical and technical ceramics
 9.4 Explain the Specialized laboratory and engineering ware
 9.5 Explain the Ceramics in the Electrical industry
 9.6 Explain the Insulators and their manufacture.
LIST OF PRACTICALS

1. Study the effect of flow rate on the efficiency of a filter press.
2. Determination of horse power required and the rate of mixing for the mixing different quantities of materials such as salt and sand in dry and wet states.
3. Determination of the number of revolution and time required for homogenous mixing of two materials per unit weight and calculation of the efficiency of the mixer.
4. Determination the horse power required for crushing a definite quantity of a material e.g. red bricks.
5. Determination the horse power required for grinding and definite quantity of a material to hundred mesh in a mill. Also calculate the work index for such a grinding operation.
7. Familiarization with different glaze materials.
8. Familiarization with different body materials.
9. Preparation of different types of glazes.
10. Identification of different glazed defects and their remedies.
COURSE AIMS:

The students will be able to learn the characteristic properties of Glass and Ceramic Materials and apply this knowledge to comprehend and solve practical problems encountered during production process.

COURSE CONTENTS

1. MECHANICAL PROPERTIES OF MATERIALS 12 HOURS

1.1 Elastic Deformation
 1.1.1 Stress and strain
 1.1.2 Tensile and compressive deformations
 1.1.3 Sheer stress strain
 1.1.4 Poison’s Ration

1.2 Elastic Moduli
 1.2.1.1 Rotation between cohesive energy and melting point
 1.2.1.2 Effect of temperature
 1.2.1.3 Anelasticity

1.3 Plastic Deformation
 1.3.1.1 Simple oxides
 1.3.1.2 Dislocation in slip
 1.3.1.3 Creep
 1.3.1.4 Effect of temperature

1.4 Polyphase Materials
 1.4.1 Mechanism
 1.4.2 Influence of temperature

1.5 Brittle Fracture
 1.5.1.1 Fracture Mechanism
 1.5.1.2 Fracture Energy
 1.5.1.3 Theoretical Strength of Ionic solids
 1.5.1.4 Flaws, their origins and role

1.6 Fracture in single and polyphase materials

1.7 Strength and strengthening of glass
 1.7.1.1 Flaws
 1.7.1.2 Influence of flaw size on the strength
 1.7.1.3 Methods of strengthening

1.8 Hardness and Abrasion
 1.8.1 Relationship with other properties
1.8.2 Elastic modules
1.8.3 Creep
1.8.4 Flow strength and phase assemblage
1.8.5 Abrasions

2. **THERMAL PROPERTIES**

2.1 Specific Heat
 2.1.1 Data on common ceramic material Effect of temperature
 2.1.2 Latent heat of fusion
 2.1.3 Fusion point
 2.1.4 Melting point

2.2 Thermal Expansion
 2.2.1 Simple ionic crystals: Thermal expansion in relation to potential energy curve, effect of phase transformation
 2.2.2 Glass: Thermal expansion curve and its significance. Thermal expansion, composition and structure of Glass
 2.2.3 Polycrystalline materials: Relationship with composition and micro structure

2.3 Thermal Conductivity
 2.3.1 Simple oxides: Relationship with other properties
 2.3.2 Polycrystalline materials: Effect of micro structure porosity and Insulation
 2.3.3 Thermal endurance of glasses w.r.t. composition

2.4 Thermal Stress
 a) Stress in Glass: Permanent and temporary stress, Annealing and tempering
 b) Thermal shock resistance of Glass
 c) Spilling of Ceramics: Effect of Moisture, Effect of shape
 d) Stress at interfaces: Glazes, Enamels and glass to metal seals, micro-stress in relation to micro-structure

3. **OPTICAL PROPERTIES**

3.1 Reflection and Reflection
 3.1.1 Refractive index and dispersion: Effect of composition, polarizability, density and temperature
 3.1.2 Reflection in relation to surface texture: Specular reflection and diffused reflection, from glazed surfaces. Reduction of reflection loss
 3.1.3 Scattering and opacity: Opacity in relation to refractive index, particle size, pore size, opal glass and glazes. Transparent and translucent ceramic materials

3.2 Absorption of Radiation
 3.2.1 Ionic colour in vitreous system: Absorption spectrum of transition metal
Glass, Ceramics & Pottery

3.2.2 Ions in U.V., Visible and I.R. regions, oxidation reduction equilibria effect of composition and structure
3.2.3 Colloidal colours: Carbon-surplur, Amber glass, se-ruby
3.2.4 U.V. and I.R absorption: Factors influencing I.R. and U.V. absorption
3.2.5 Fluorescence

3.3 Polarization and Birefringence
3.3.1 Crystals: Polariser-Analyser, Tint plate, Mineralogical microscope
3.3.2 Polycrystalline material under a microscope: Microstructures in transmitted and reflected light
3.3.3 Strain in glass: Strain and polarization of light, measurement of strain in glass, strain discs

3.4 Microstructure
3.4.1 Mineralogical Microscope
3.4.2 Preparation of Specimens
3.4.3 Microstructure of typical ceramics materials
3.4.4 Electron Microscope

4. CHEMICAL PROPERTIES 08 HOURS
4.1 Surface Chemistry of Vitreous Materials
4.1.1 Attack of water, Alkali and Acids: Reaction process and reaction rates
4.1.2 Effect of composition, weathering of glass surface. Alkali resistance, ion exchange
4.1.3 Electrode Glasses: Hydrogen and metal ion-electrode
4.1.4 Durability of Glazes and enamels: Effects of composition, effect of
4.1.5 Electrical stress in insulator glaze
4.1.6 Devitrification and phase separation

4.2 Chemical Attack on Refractories
4.2.1 Slag’s and glasses
4.2.2 Molten Metals
4.2.3 Glasses
4.2.4 Aqueous Solution

5. ELECTRICAL PROPERTIES 08 HOURS
5.1 Conduction
5.1.1 Ionic Conduction: conduction in crystals and polycrystalline ceramics, conduction in glasses, effect of composition and structures
5.1.2 Electronic Condition: Band structure and transport, conduction in crystals and polycrystalline ceramics, semi-conducting glasses.
5.2 Dielectric Properties
5.2.1 Di-electric constant and Di-electric loss: polarization and Di-electric behavior of
5.2.2 Phenomena, effect of temperature and frequency. Di-electric behavior of
5.2.3 Poly crystalline ceramics. Dielectric behaviors of glasses in relation to
5.2.4 Composition and structure
5.2.5 Dielectric strength
5.2.6 Insulators
5.2.7 Ferro-electric phenomena: Fero-electric behaviors of ceramics in relation to structure
5.2.8 Piezo-electric ceramics. Electro-optic phenomena in ceramics

6. MAGNETIC PROPERTIES 06 HOURS

7. PHYSICAL PROPERTIES 06 HOURS

INSTRUCTIONAL OBJECTIVES

1. MECHANICAL PROPERTIES OF MATERIALS 12 HOURS

1.1 Understand Elastic Deformation
1.1.1 Define Stress and strain
1.1.2 Explain Tensile and compressive deformations
1.1.3 Describe Sheer stress strain
1.1.4 Discuss Poison’s Ration

1.2 Understand Elastic Moduli
1.2.1.1 Develop Rotation between cohesive energy and melting point
1.2.1.2 Discuss Effect of temperature
1.2.1.3 Explain Anelasticity
1.3 Understand Plastic Deformation
1.3.1.1 Explain the role of Simple oxides
1.3.1.2 Describe the process of Dislocation in slip
1.3.1.3 Discuss Creep
1.3.1.4 Illustrate the Effect of temperature
1.4 Understand Polyphase Materials
1.4.1 Describe Mechanism
1.4.2 Influence of temperature
1.5 Understand Brittle Fracture
1.5.1.1 Describe Fracture Mechanism
1.5.1.2 Describe Fracture Energy
1.5.1.3 Explain Theoretical Strength of Ionic solids
1.5.1.4 Describe the Flaws, their origins and role

1.6 Understand Fracture in single and polyphase materials

1.7 Understand Strength and strengthening of glass
1.7.1.1 Describe the Flaws
1.7.1.2 Describe the Influence of flaw size on the strength
1.7.1.3 Explain the Methods of strengthening

1.8 Understand Hardness and Abrasion
1.8.1 Explain the Relationship with other properties
1.8.2 Describe Elastic modules
1.8.3 Discuss Creep
1.8.4 Explain Flow strength and phase assemblage
1.8.5 Describe Abrasions

2. THERMAL PROPERTIES

2.1 Understand Specific Heat
2.1.1 Explain the effect of common ceramic material Effect of temperature
2.1.2 Define Latent heat of fusion
2.1.3 Define Fusion point
2.1.4 Describe Melting point

2.2 Understand Thermal Expansion
2.2.1 Describe the Simple ionic crystals: Thermal expansion in relation to potential energy curve, effect of phase transformation
2.2.2 Glass: Thermal expansion curve and its significance. Thermal expansion, composition and structure of Glass
2.2.3 Polycrystalline materials: Relationship with composition and micro structure

2.3 Understand Thermal Conductivity
2.3.1 Describe the thermal conductivity in Simple oxides: Relationship with other properties
2.3.2 Describe the effect of Polycrystalline materials: Effect of micro structure porosity and Insulation
2.3.3 Explain Thermal endurance of glasses w.r.t. composition

2.4 Understand Thermal Stress
a) Describe the formation of Stress in Glass: Permanent and temporary stress, Annealing and tempering
b) Define Thermal shock resistance of Glass
c) Explain Spalling of Ceramics: Effect of Moisture, Effect of shape
d) Describe the Stress at interfaces: Glazes, Anamels and glass to metal seals, micro-stress in relation to micro-structure
3. OPTICAL PROPERTIES

3.1 Understand the Reflection and Refection

3.1.1 Define Refractive index and dispersion: Effect of composition, polarizability, density and temperature

3.1.2 Describe the Reflection in relation to surface texture: Specular reflection and diffused reflection, from glazed surfaces. Reduction of reflection loss

3.1.3 Define Scattering and opacity: Opacity in relation to refractive index, particle size, pore size, opal glass and glazes. Transparent and translucent ceramic materials

3.2 Understand Absorption of Radiation

3.2.1 Understand Ionic colour in vitreous system: Absorption spectrum of transition metal

3.2.2 Describe ions in U.V., Visible and I.R. regions, oxidation reduction equilibria effect of composition and structure

3.2.3 Describe the behavior of Colloidal colors: Carbon-surplur, Amber glass, se-ruby

3.2.4 Explain U.V. and I.R absorption: Factors influencing I.R. and U.V. absorption

3.2.5 Define Fluorescence

3.3 Understand Polarization and Birefringence

3.3.1 Define polarization, discuss the Crystals: Polariser-Analyser, Tintplate, Mineralogical microscope

3.3.2 Describe the behavior of Polycrystalline material under a microscope: Microstructures in transmitted and reflected light

3.3.3 Describe the Strain in glass: Strain and polarization of light, measurement of strain in glass, strain discs

3.4 Understand Microstructure

3.4.1 Mineralogical Microscope

3.4.2 Preparation of Specimens

3.4.3 Microstructure of typical ceramics materials

3.4.4 Electron Microscope

4. CHEMICAL PROPERTIES

4.1 Understand Surface Chemistry of Vitreous Materials

4.1.1 Explain the Attack of water, Alkali and Acids: Reaction process and reaction rates

4.1.2 Describe the Effect of composition, weathering of glass surface. Alkali resistance, ion exchange

4.1.3 Discuss Electrode Glasses: Hydrogen and metal ion-electrode

4.1.4 Explain the Durability of Glazes and enamels: Effects of composition, effect of

4.1.5 Explain the Electrical stress in insulator glaze

4.1.6 Define the Devitrification and phase separation
4.2 Understand Chemical Attack on Refractories
4.2.1 Describe the effect of Slags and glasses
4.2.2 Describe the effect of Molten Metals
4.2.3 Describe the effect of Glasses
4.2.4 Aqueous Solution

5. **ELECTRICAL PROPERTIES**

5.1 Understand Conduction
5.1.1 Define Ionic Conduction: conduction in crystals and polycrystalline ceramics, conduction in glasses, effect of composition and structures
5.1.2 Describe Electronic Condition: Band structure and transport, conduction in crystals and polycrystalline ceramics, semi-conducting glasses.

5.2 Understand Dielectric Properties
5.2.1 Define Di-electric constant and Di-electric loss: polarization and Di-electric
5.2.2 Explain Phenomena, effect of temperature and frequency. Di-electric behavior of
5.2.3 Describe the Poly crystalline ceramics. Dielectric behavior of glasses in relation to
5.2.4 Describe the effect of Composition and structure
5.2.5 Describe the Die-electric strength
5.2.6 Describe the factors which effect the die-electric of Insulators
5.2.7 Describe the Ferro-electric phenomena: Fero-electric behavior of ceramics in relation to structure
5.2.8 Explain the Piezo-electric ceramics. Electro-optic phenomena in ceramics

6. **MAGNETIC PROPERTIES**

6.2 Ferromagnetism: Elementary theory, Hysteresis, Curie point,
6.2.1 Ferromagnetism
6.3 Ferromagnetic Ceramics: Spinals, Hexagonal Ferrites, Garnets,
6.3.1 Ferromagnetic behavior in relation to structure, soft ferrites, Hard
6.3.2 Ferrities, and square loop Hysteresis ferrities.

7. **PHYSICAL PROPERTIES**

7.1 Relations of Glass composition to:
7.2 Density and Specific Gravity
7.2.1 Viscosity
7.2.2 Surface Tension
7.2.3 Softening point
7.2.4 Annealing point etc.
LIST OF PRACTICALS

1. Dye penetration test
2. Microscopic examination of various types of white wares.
3. Microscopic examination of various types of refractory bricks.
4. Modulus of rupture
5. Compressive strength
6. Abrasion resistance
7. Chipping/impact strength
8. War page.
9. Lead solubility
10. Resistance to slag and glass.
11. Drying rate and grain strength
GCT 224 CERAMIC RAW MATERIALS

COURSE AIM

The students will be able to prepare different ceramics bodies after having comprehensive knowledge of the facts imparted by the various ingredients in raw materials.

1.1 Occurrence and availability
1.2 Physical and Chemical properties
1.3 Clay type

1.3.1 Origin of Clay
1.3.2 Primary and secondary group Kaolins
1.3.3 Montmorillonite
1.3.4 Little
1.3.5 Plasticity
1.3.6 Drawing and Firing of Clay
1.3.7 Clay Bodies
1.3.8 Testing procedures for evaluation on raw materials for their use in Glass Ceramics industry
1.3.9 Impurities in clays and role there-of

1.4 Classification

1.4.1 China clay
1.4.1.1 Resources in Pakistan
1.4.1.2 Application in Ceramics
1.4.2 Ball clay
1.4.2.1 Resources in Pakistan
1.4.2.2 Application in Ceramics
1.4.3 Fireclay
1.4.3.1 Resources in Pakistan
1.4.3.2 Application in Ceramics
1.4.4 Building clay
1.4.4.1 Resources in Pakistan
1.4.4.2 Application in Ceramics
1.4.5 Bentonite
1.4.5.1 Resources in Pakistan
1.4.5.2 Application in Ceramics
1.4.6 Fuller’s earth
1.4.6.1 Resources in Pakistan
1.4.6.2 Application in Ceramics
2. **Silica Sources**

2.1 Quartz
 - 2.1.1 Available sources in Pakistan
 - 2.1.2 Utility in Glass & Ceramics
 - 2.1.3 Other uses

2.2 Sand
 - 2.2.1 Available sources in Pakistan
 - 2.2.2 Utility in Glass & Ceramics
 - 2.2.3 Other uses

2.3 Sandstone
 - 2.3.1 Available sources in Pakistan
 - 2.3.2 Utility in Glass & Ceramics
 - 2.3.3 Other uses

2.4 Ganister
 - 2.4.1 Available sources in Pakistan
 - 2.4.2 Utility in Glass & Ceramics
 - 2.4.3 Other uses

2.5 Quartzite
 - 2.5.1 Available sources in Pakistan
 - 2.5.2 Utility in Glass & Ceramics
 - 2.5.3 Other uses

2.6 Polymorphic modifications-quartz
 - 2.6.1 Transformation of quartz into Cristoballite, Tridymite
 - 2.6.2 Action of Heat

2.7 Diatomaceous earth
 - 2.7.1 Available sources in Pakistan
 - 2.7.2 Utility in Glass & Ceramics
 - 2.7.3 Other uses

3. **Silimanite Group**

3.1 Silimanite
 - 3.1.1 Available sources in Pakistan
 - 3.1.2 Use as Refractory & Insulator

3.2 Kyanite
 - 3.2.1 Available sources in Pakistan
 - 3.2.2 Use as Refractory & Insulator

3.3 Andalusite
 - 3.3.1 Available sources in Pakistan
 - 3.3.2 Use as Refractory & Insulator
 - 3.4 Conversion to Mulite

4. **Carbonate Sources**

4.1 Limestone
 - 4.1.1 Formation & Deposits of Limestone in Pakistan
 - 4.1.2 Utility in low temperature bodies
 - 4.1.3 Other uses
Glass, Ceramics & Pottery

4.2 Magnasite
4.2.1 Formation & Deposits of Magnasite in Pakistan
4.2.2 Utility in Glass & Ceramics Industry
4.2.3 Other uses

4.3 Dolomite
4.3.1 Formation & Deposits of Dolomite in Pakistan
4.3.2 Utility in Glass & Ceramics Industry
4.3.3 Other use

4.4 Calcination

5. Fluxes

5.1 Feldspar
5.1.1 Types of feldspar minerals
5.1.2 Effect of heat
5.1.3 Application as a flux in Ceramics Bodies
5.1.4 Use as a flux in Glass Melting

5.2 Orthoclase-plagioclase series
5.3 Felspathoids-Nepheline
5.3.1 Deposits, quality and uses in Pakistan

6. Miscellaneous

6.1 Bauxite
6.2 Diaspora
6.3 Pyrophyllite
6.4 Olivine
6.5 Chromite
6.6 Talc
6.7 Bone Ash
6.8 Woolastonite & zircon
6.9 Rutile
6.10 Fluorspar
6.11 Silicon Carbide
6.12 Graphite
6.13 Mica
6.14 Lithium-minerals and beryl

RECOMMENDED BOOKS

INSTRUCTIONAL OBJECTIVES

1.1 Occurrence and availability
1.2 Physical and Chemical properties
1.3 Clay type
 1.3.1 Origin of Clay
 1.3.2 Primary and secondary group Kaolins
 1.3.3 Montmorillonite Clay
 1.3.4 Illite clay
 1.3.5 Plasticity
 1.3.6 Drawing and Firing of Clay
 1.3.7 Clay Bodies
 1.3.8 Testing procedures for evaluation on raw materials for their use in Glass Ceramics industry
 1.3.9 Impurities in clays and role there-of
1.4 Classification Illustrate the occurrences of the following clays in Pakistan and give an account for their use in glass and ceramic industry
 1.4.1 Chinaclay
 1.4.1.1 Resources in Pakistan
 1.4.1.2 Application in Ceramics
 1.4.2 Ball clay
 1.4.2.1 Resources in Pakistan
 1.4.2.2 Application in Ceramics
 1.4.3 Fireclay
 1.4.3.1 Resources in Pakistan
 1.4.3.2 Application in Ceramics
 1.4.4 Building clay
 1.4.4.1 Resources in Pakistan
 1.4.4.2 Application in Ceramics
 1.4.5 Bentonite
 1.4.5.1 Resources in Pakistan
 1.4.5.2 Application in Ceramics
 1.4.6 Fuller’s earth
 1.4.6.1 Resources in Pakistan
 1.4.6.2 Application in Ceramics

2. Silica Sources Illustrate the occurrences of the following Silica minerals in Pakistan and give an account for their use in glass and ceramic industry
 2.1 Quartz
 2.1.1 Available sources in Pakistan
 2.1.2 Utility in Glass & Ceramics
 2.1.3 Other uses
 2.2 Sand
 2.2.1 Available sources in Pakistan
 2.2.2 Utility in Glass & Ceramics
 2.2.3 Other uses
2.3 Sandstone
 2.3.1 Available sources in Pakistan
 2.3.2 Utility in Glass & Ceramics
 2.3.3 Other uses

2.4 Ganister
 2.4.1 Available sources in Pakistan
 2.4.2 Utility in Glass & Ceramics
 2.4.3 Other uses

2.5 Quartzite
 2.5.1 Available sources in Pakistan
 2.5.2 Utility in Glass & Ceramics
 2.5.3 Other uses

2.6 Polymorphic modifications-quartz
 2.6.1 Transformation of quartz into Cristoballite, Tridymite
 2.6.2 Action of Heat

2.7 Diatomaceous earth
 2.7.1 Available sources in Pakistan
 2.7.2 Utility in Glass & Ceramics
 2.7.3 Other uses

3. **Silimanite Group** Illustrate the occurrences of the following Sillimanite group of minerals in Pakistan and give an account for their use in glass and ceramic industry

 3.1 Silimanite
 3.1.1 Available sources in Pakistan
 3.1.2 Use as Refractory & Insulator

 3.2 Kyanite
 3.2.1 Available sources in Pakistan
 3.2.2 Use as Refractory & Insulator

 3.3 Andalusite
 3.3.1 Available sources in Pakistan
 3.3.2 Use as Refractory & Insulator

 3.4 Conversion to Mullite

4. **Carbonate Sources** Illustrate the occurrences of the following carbonate in Pakistan and give an account for their use in glass and ceramic industry

 4.1 Limestone
 4.1.1 Formation & Deposits of Limestone in Pakistan
 4.1.2 Utility in low temperature bodies
 4.1.3 Other uses

 4.2 Magnasite
 4.2.1 Formation & Deposits of Magnasite in Pakistan
 4.2.2 Utility in Glass & Ceramics Industry
 4.2.3 Other uses

 4.3 Dolomite
 4.3.1 Formation & Deposits of Dolomite in Pakistan
 4.3.2 Utility in Glass & Ceramics Industry
4.3.3 Other use
4.4 Calcination

5. Fluxes
Illustrate the occurrences of the following fluxes in Pakistan and give an account for their use in glass and ceramic industry

5.1 Feldspar
5.1.1 Types of feldspar minerals
5.1.2 Effect of heat
5.1.3 Application as a flux in Ceramics Bodies
5.1.4 Use as a flux in Glass Melting

5.2 Orthoclase-plagioclase series

5.3 Felspathoids-Nepheline
5.3.1 Deposits, quality and uses in Pakistan

6. Miscellaneous

6.1 Bauxite
6.1.1 Describe Bauxite and it sources in Pakistan
6.1.2 Describe Bayer Process and it use as refractory and high Alumina cement

6.2 Diaspora
6.2.1 Describe Diaspora and it sources in Pakistan
6.2.2 Describe purification Process and it use as refractory and high Alumina cement

6.3 Pyrophyllite
6.3.1 Describe Pyrophyllite and it sources in Pakistan
6.3.2 Discuss its composition, and its application in Ceramics Industry

6.4 Olivine
6.4.1 Describe Olivine and it sources in Pakistan
6.4.2 Discuss its composition, and its application in Ceramics Industry

6.5 Chromite
6.5.1 Describe Chromite and it sources in Pakistan
6.5.2 Discuss its composition, and and explain the process for making Chromite brick

6.6 Talc
6.6.1 Describe Talc and Soapstone and its sources in Pakistan
6.6.2 Discuss its composition, and its application in Tile Industry and glazes

6.7 Bone Ash
6.7.1 Production of Bone Ash from Kettle Bone
6.7.2 Discuss ash grinding and removal of impurities and its substitute

6.8 Woolastonite & zircon
6.8.1 Describe the minerals and its sources.
6.8.2 Discuss their composition, and its application in glass and ceramics industry

6.9 Rutile
6.9.1 Describe Rutile and its sources in Pakistan
6.9.2 Discuss its composition, and its application in Glass & Ceramics Industry

6.10 Fluorspar
6.10.1 Describe Fluorspar and its sources in Pakistan
6.10.2 Discuss its composition, and its application in Glass & Ceramics Industry

6.11 Silicon Carbide
6.11.1 Describe SiC and its manufacturing techniques
6.11.2 Discuss its composition, and its application in Glass & Ceramics Industry

6.12 Graphite
6.12.1 Describe Graphite and the local available sources
6.12.2 Discuss its composition, and its application in Glass & Ceramics Industry

6.13 Mica
6.13.1 Describe MICA and its sources
6.13.2 Discuss its composition, and its application in Glass & Ceramics Industry

6.14 Lithium-minerals and beryl
6.14.1 Describe minerals and its sources and purification
6.14.2 Discuss its composition, and its application in Glass & Ceramics Industry
LIST OF PRACTICALS

1. Study the operation of a sieve shaker through the use of variety of crushed solids. (Alternately, a manual sieve screen analysis may be carried out).

2. Study the operation of jaw crusher

4. Silica
 i) Gravimetric method based on dehydration of salicylic acid and residual silica by colorimetric method based on the formation of either yellow or blue silicomoly bide acid.

5. Alumina EDTA titration
 i) Gravimetric method.

6. Sodium oxide
 i) Flame photometric method ii) Gravimetric Zineuranyl acetate method.

7. Potassium oxide
GCT 233 CERAMIC PRODUCTION TECHNIQUES

Total Contact Hours 160
Theory 64 2 3 3
Practical 96

COURSE AIM

The students will be able to apply the principles of ceramic manufacturing to the commercial production of ceramic products in the industries and develop an organic relationship between the theory and the practice.

COURSE CONTENTS

1. SLIP CASTING 10 HOURS
 a. Properties of aqueous suspensions
 b. Normal casting processes
 c. Solid casting
 d. Pressure casting
 e. Deflocculants, their types, behavior, viscosity & thixotropy

2. PRESSING 10 HOURS
 a. Simple presses
 b. Hydraulic presses
 c. Dry pressing
 d. Binders in pressing & their properties
 e. ISO-static pressing
 f. HIP pressing

3. THROWING 8 HOURS
 a. Effect of water on bodies for throwing
 b. Pugmill & its effects on throwing bodies

4. JIGGERING 6 HOURS
a. Jiggering
b. Its types

5. **JOLLEYING** 6 HOURS
 a. Jolleying
 b. Its types

6. **SINTERING** 8 HOURS
 a. Various methods of sintering
 b. New techniques of sintering
 c. Sintering of Al₂O₃ & MgO

7. **DRYING & FINISHING** 10 HOURS
 a. Mechanism of Drying
 b. Bulk drying
 c. Dryers and types
 d. Finishing techniques

8. **INJECTION MOULDING TECHNIQUES** 6 HOURS
INSTRUCTIONAL OBJECTIVES

1. SLIP CASTING
 1.1 Explain the Properties of aqueous suspensions
 1.2 Explain the Normal casting processes
 1.3 Define and Explain the Solid casting
 1.4 Define and Explain the Pressure casting
 1.5 Explain the Deflocculant, its types & behavior, viscosity & thixotropy

2. PRESSING
 1.1 Define and Explain the Simple presses
 1.2 Define and Explain the Hydraulic presses
 1.3 Define and Explain the Dry pressing
 1.4 Define and Explain the Binders in pressing & their properties
 1.5 Define and Explain the Iso-static pressing
 1.6 Define and Explain the HIP pressing

2. THROWING
 2.1 Describe the Effect of water on bodies for throwing
 2.2 Describe the Pugmill & its effects on throwing bodies

3. JIGGERING
 3.1 Define and explain the Jiggering
 3.2 Explain the types of jiggering

4. JOLLEYING
 4.1 Define and explain the Jolleying
 4.2 Explain the types of Jolleying

5. SINTERING
 5.1 Describe the Various methods of sintering
 5.2 Describe the New techniques of sintering
 5.3 Describe the Sintering of Al₂O₃ & MgO

6. DRYING & FINISHING
 6.1 Explain the Mechanism of Drying
 6.2 Define and Explain the Bulk drying
 6.3 Explain the Dryers and types
 6.4 Explain the Finishing techniques

7. DEFINE AND DESCRIBE THE INJECTION MOULDING TECHNIQUES
RECOMMENDED BOOKS

2. Introduction to ceramics by WD Kingery John wiley & Sons, New York London
LIST OF PRACTICALS

1. Study the theory and operation of filter press i.e. Filtering, washing cleaning of press by filtering various industrially important slurries.
2. Determinations of flash point and fire point.
3. Determination of Viscosity by Ostwald’s Viscometer.
5. Making and pressing of tiles i.e. Wall Tiles and Floor tiles by various types of Presses e.g. Friction Press, Toggle Press and Hydraulic Press.
6. Fabrication of refractory furniture for the use in Kilns.
THIRD YEAR
لا يمكنني قراءة النص العربي من الصورة.
Glass, Ceramics & Pottery

The translation of the text is as follows:

Glass.
حسب إرشادات (غير مسمولة)

Gen-311

نصاب إخلاءات

سال سوم

 Moqormalat

- الأساسزاداري
- شتات
- عدل والصاف
- تقري نظمي كور
- قرر نظمي بايز
- الحيز آدميت
- شاكي
- غنوة غير
- بردان
- خوثر
- اشوانوز
- جامع

- إنشات لك محرمات (بدراجهم عصر ظل واساءه اعمال شخصيات)
Glass, Ceramics & Pottery

Gen-311

نصاب (سال سوم)

مختصر پاکستان

خصص

قومی پاکستان

فم

موجودات

- ہائے تریکی مکمل
- ریاستہائے متحدہ
- تعلیم بھیل وکل
- تعلیم بھیل
- ملک جہان
- ریاست کالماق
- ریاست جوہر کیمیر
- شیرز اوریان کا کھاؤ
- قرارڈ اور مقاومت
- خاکی کے پاکستان کاہت

- 1956 - 1962 اور 1973 کے دو مثالی اسلاج
- پاکستان کا گھریلو بروز دار کے دنوں
- قدیم ویاکل (ملک بھیس کوک)
مطالعہ پاکستان

حکومت

قیام پاکستان

قیام پاکستان کے بعد درج کے سلسلے میں ہمارے جامعہ جامعہ کا مسلسل کہنے کے لئے

- بیانیہ اور اپنی کتابیں جاری کرنا
- مسلمانوں کی حمایت کرنا
- تعلیم کی ترقی کے لئے فصل میں ہويا
- جمہوریت کی ترقی کے لئے فصل میں ہويا
- بجلی کی ترقی کے لئے فصل میں ہويا
- مہم پر عربہ آدھا ہويا جو مسلمانوں کے لئے فصل میں ہويا
- ریاست اور عربہ کے بارے میں فصل میں ہويا
- عربی کالج کے ادارے میں فصل میں ہويا
- قراردادو معاوضے کے لئے فصل میں ہويا

قیام پاکستان کے بعد درج کے سلسلے میں ہمارے جامعہ جامعہ کا مسلسل کہنے کے لئے

- پاکستان کے بعد درج کے سلسلے میں ہمارے جامعہ جامعہ کا مسلسل کہنے
- پاکستان کے بعد درج کے سلسلے میں ہمارے جامعہ جامعہ کا مسلسل کہنے
- پاکستان کے بعد درج کے سلسلے میں ہمارے جامعہ جامعہ کا مسلسل کہنے
GCT 313 GLASS MANUFACTURING PROCESSES

Total Contact Hours 128
Theory 32
Practical 96

COURSE AIM

The students would be able to apply the knowledge acquired through Elements of glass in order to prepare different types of industrial glasses while testing various properties thereof.

COURSE CONTENTS

1. GLASS CONDITIONING 4 HOURS

The temperature conditions required very greatly according to the articles being manufactured and the process used.

1. FORMING MACHINES 4 HOURS
 1. Blow and blow machine
 2. IS Machines
 3. Press and blow machines
 4. Mould and metal forming
 5. Ribbon machine
 6. Classification of machines
 7. Effect related to the speed of production
 8. Time cycle and temperature conditions
 9. Forming defects
 10. Viscosity and working
 11. Bottle shape and design
 12. Bottle weight

3. TUBE AND RODS MANUFACTURING 4 HOURS

Danner process
Updraw process
Vello and downdraw process
Tube / rod drawing operations

1. **THE PATTERN OF FLAT GLASS DEVELOPMENT** 4 HOURS
 - Basic science of flat glass process
 - Stress and strain movement in sheet glass
 - Distortion and lines resulted in the design process
 - Updraw and downdraw sheet processes
 - Glass composition in different flat glass

1. **ROLLED GLASS PROCESSES** 3 HOURS
 5.1 Introduction
 5.2 Table cast process
 5.3 The intermittent double roll process
 5.4 The continuous double roll process
 5.5 Essential elements of continuous process

6. **WIRED GLASS PROCESS** 4 HOURS
 6.1 Boudin process
 6.2 Drawn cylinder process
 6.3 Wire mesh process

7. **POLISHED PLATE GLASS PROCESS** 4 HOURS

8. **FLAT DRAWN SHEET PROCESS** 4 HOURS
 8.1 Drawn cylinder process
 8.2 Fourcault updraw process
 8.3 Colburn updraw process
 8.4 Slot bushing downdraw process
 8.5 Fusion downdraw process

9. **FLOAT PROCESS** 4 HOURS
 9.1 Introduction
 9.2 Essential features of the process
 9.3 Theory of the float process
 9.4 Float ribbon formation
 9.5 Chemical aspect of the process
 9.6 Modified float process
 9.7 Tinted float glass
 9.8 Supertints float glass
9.9 Low iron float glass

10. LAMINATED SAFETY GLASS

10.1 Introduction
10.2 Manufacturing process
10.3 Application of the process
10.4 Cyclone resistant laminated glass
10.5 Characteristics of anti bandit glass

COURSE CONTENTS

1. GLASS CONDITIONING

Explain where proper temperature conditioning starts in glass melting furnace; Explain effect of article being manufactured on the glass conditioning; Explain the control of refiner temperature; Describe with sketches general layout for owens and flow operation; Explain the working of fore hearth for glass conditioning; Explain the sketch of a bottle; Enlist various steps involved in making a bottle; Explain gathering of glass by Hand, By suction, By gob.

Feeder; Explain the dropping of glass in blank mould; explain the forming of finish by pressure; Explain the forming of parison in blank; Explain removing from blank mould; Explain shaping, buffering and elongation of parison; Explain the transfer to blow mould; Explain cooling in blow mould; Explain subsequent handling, annealing and cooling down.

2. FORMING MACHINES

Blow and blow machines; Explain with sketch the working of blow & blow machine; Explain the working of I.S. machines; Explain the working of press and blow machines; Enlist types of mould; Explain manufacture of moulds; Define “DOPes”; Explain designing of mould; Explain with sketch Westlake paste mould process cycle; Explain the working of ribbon machine; Enlist types of machines; Explain the trends in the speed of machines; Explain the time cycle and temperature
conditions; Classify the forming defects; Explain with sketch machine blown ware faults; Explain were defects and their causes; Explain the relationship of viscosity and working; Describe bottle shape and design parameters; Explain relationship of bottle weight and size.

3. TUBE AND RODS MANUFACTURING
 Explain the Danner process for the manufacture of tube & rod; Describe advantages & disadvantages of danner process; Explain updraw process for production of tube & rod; Explain yellow and downdraw processes; Describe the advantages of vello & down draw process; Explain subsequent drawing operation of the four processes mentioned above.

4. THE PATTERN OF FLAT GLASS DEVELOPMENT
 Explain the basic science of flat glass process; Describe the stress and stretch in an updrawn process as well as in a horizontal ribbon process; Explain lines and distortion in updraw and down draw sheet processes; Explain how the choice of glass composition is a matter of crucial importance; Describe typical glass composition of sheet glass.

5. ROLLED GLASS PROCESSES
 Define the table cast process; Explain use of table east glass; Explain the intermittent double roll process; Describe the use of intermittent double roll glass; Describe the continuous double roll process; Explain various types of continuous double roll process; Describe essential elements of continuous double roll process.

6. WIRED GLASS PROCESS
 Give various types of wired glass processes; Describe boundin & Pilkington double pass wired process; Explain the importance of quality of wire mesh.
7. **POLISHED PLATE GLASS PROCESS**
 Explain the development of polish plate process; Describe the drawn cylinder process;

8. **FLAT DRAWN SHEET PROCESS**
 Describe the equipment and operation of Foucault process; Explain the equipment and operation of the colburn updraw process and glaverbel modification; Explain the elements of slot bushing downward process; Explain the equipment and operation of fusion downdraw process.

9. **FLOAT PROCESS**
 Explain the development of float process; Describe the float bath and equilibrium mode of operation; Explain the theory of float effect and equilibrium thickness; Explain the float ribbon formation: Explain the chemical aspects i.e. properties of tin, oxidation prevention, presence of S&O2 etc; Explain the main features of modified float glass; Explain the use of tinted glass for radiation control; Describe the metal oxides used for tinted glass; Define super tints; Explain the term “spectrally selective”; Explain the use of supertints; Explain the presence of green tinge when viewing from the edge; Describe the amount of iron oxide present in low iron glass.

10. **LAMINATED SAFETY GLASS**
 Defined laminated safety glass; Explain the process of lamination; Explain the benefits of lamination; Describe the applications of laminated safety glass; Define optlight glass and explain the advantages of it; Explain and define cyclone resistant laminate; Explain the composition of an anti bandit glass; Explain edge delamination as a characteristic of laminated glass.
RECOMMENDED BOOKS

2. Gunther, R “Glass melting tank furnace” Society of Glass technology

LIST OF PRACTICALS

1. Thermal expansion of Glass.
2. Use of Dilatometer (IS: 5623-1970; ASTM:C-337-57)
3. Under controlled heating rate (CP, LP, Mg and Tg)
4. Littleton softening point (ASTM:C-338-57)
5. Low temperature viscosity by fiber elongation method.
6. Preparation of paperweights.
7. Lenses making.
8. Batch reparation for soda lime glass,
9. Melting and study of soda lime glass.
10. Preparation of batches for various color glasses.
GCT 324 SPECIAL / TECHNICAL CERAMICS

Total Contact Hours 160

<table>
<thead>
<tr>
<th>Theory</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSE AIM

The objective of this course is to make the students aware of latest techniques and materials that are being brought in to use for numerous practical importances, especially the medical and industrial equipment e.g. Bio – Ceramics, heat exchangers for chemical industry, etc.

COURSE CONTENTS

1. CERAMIC PARTS FOR VARIOUS INDUSTRIES 12 HOURS
 1.1 Chemical Industry – Rashing rings etc.
 1.2 Textile Industries – Thread guides etc.
 1.3 Paper Industries – Nose & Cones etc.

2. HIGH TEMPERATURE CERAMICS
 LIKE Al_2O_3 – MULLITE – ZIRCON BODIES 12 HOURS
 2.1 Insulators – Low & High Tension
 2.2 Chemical Porcelain and Stoneware
 2.3 Thread guides for textile Industry
 2.4 Laboratory Porcelain
 2.5 Mullite Porcelain
 2.6 Alumina bodies for spark plugs

3. FABRICATION OF VARIOUS PARTS OF SHEATS FOR THERMOCOUPLES 10 HOURS

4. CHEMICAL PORCELAIN FOR MAKING OF CRUCIBLES, DISHES, GOUCH CRUCIBLES, VARIOUS TYPES OF CERAMIC CAPACITORS, INSULATORS AND RESISTORS, ETC. 10 HOURS
5. CERAMIC HEAT EXCHANGERS FOR CHEMICAL INDUSTRY.
 10 HOURS

6. BIO-CERAMICS- INTRODUCTION, MAKING OF ARTIFICIAL TEETH, BONE PARTS, KNEE etc.
 10 HOURS
INSTRUCTIONAL OBJECTIVES

1. CERAMIC PARTS FOR VARIOUS INDUSTRIES
 1.1 Describe the role of Advanced Ceramics in Chemical Industry – Rashing rings
 1.2 Describe the role of Advanced Ceramics in Textile Industries – Thread guides
 1.3 Describe the role of Advanced Ceramics in Paper Industries – Nose & Cones

2. HIGH TEMPERATURE CERAMICS LIKE Al_2O_3 – MULLITE – ZIRCON BODIES
 2.1 Explain Insulators – Low & High Tension as high temperature Ceramics
 2.2 Explain Chemical Porcelain and Stoneware as high temperature Ceramics
 2.3 Explain Thread guide for textile Industry as high temperature Ceramics
 2.4 Explain Laboratory Porcelain as high temperature Ceramics
 2.5 Explain Mullite Porcelains as high temperature Ceramics
 2.6 Explain Alumina bodies for spark plugs as high temperature Ceramics

3. DESCRIBE THE FABRICATION OF VARIOUS PARTS OF SHEETS FOR THERMOCOUPLES

4. DESCRIBE THE CHEMICAL PORCELAIN FOR MAKING OF CRUCIBLES, DISHES, GOUCH CRUCIBLES, VARIOUS TYPES OF CERAMIC CAPACITORS, INSULATORS AND RESISTORS, ETC.

5. DESCRIBE THE CERAMIC HEAT EXCHANGERS FOR CHEMICAL INDUSTRY.

6. DESCRIBE THE BIO-CERAMICS AND INTRODUCE THE MAKING OF ARTIFICIAL TEETH, BONE PARTS KNEE ETC.
RECOMMENDED BOOKS

2) Advances in ceramics, Vol.9 American ceramic society.
3) Advanced Ceramics, Ramakrishna

LIST OF PRACTICALS

1. Preparation of raw Materials up to 99.5 % purity
2. Preparation of bodies by grinding & pulverizing.
3. Pressing of materials / extrusion / Casting, Drying & Finishing of Products and firing above 1250°C according to body compositions.
4. Body composition of Spark plugs and its firing up to 1400°C.
5. Fabrication of thread guides for Textile Industry.
7. Development of Dental Porcelain bodies.
GCT 333 SANITARY WARES & TILES

Total Contact Hours 160
Theory 64
Practical 96

COURSE AIM

The students will be able to understand various bodies of tile and sanitary wares which is the most profitable ceramic industry of the county.

COURSE CONTENTS

1. TILE RAW MATERIALS 12 HOURS
 Talc
 Clay
 Quartz
 Feldspar

2. TILE BODY 12 HOURS
 Grinding of Talc
 Mixing of Clay, Quartz and Feldspar
 Pulverizing of body composition
 Granulation of the body materials

3. MANUFACTURING PROCESSES 14 HOURS
 Pressing by toggle, Hydraulic and Screw, etc.
 Finishing
 Glazing
 Firing

4. SANITARY WARES – RAW MATERIALS 12 HOURS
 Clay
 Quartz
Feldspar

5. **FORMING OF SANITARY WARES**

 14 HOURS

 Solid casting
 Finishing
 Glazing
 Firing
INSTRUCTIONAL OBJECTIVES

1. TILE RAW MATERIALS
 1.1 Describe Talc as tile raw material
 1.2 Describe Clay as tile raw material
 1.3 Describe Quartz as tile raw material
 1.4 Describe Feldspar as tile raw material

2. TILE BODY
 2.1 Explain the Grinding of Talc
 2.2 Explain the Mixing of Clay, Quartz and Feldspar
 2.3 Explain the Pulverizing of Moisture in body Composition
 2.4 Explain the Granulation of the body materials

3. MANUFACTURING PROCESSES
 3.1 Explains the Pressing by toggle, Hydraulic and Screw, etc.
 3.2 Explain the Finishing
 3.3 Explain the Glazing
 3.4 Explain the Firing

4. SANITARY WARES – RAW MATERIALS
 4.1 Describe Clay as tile raw material
 4.2 Describe Quartz as tile raw material
 4.3 Describe Feldspar as tile raw material

5. FORMING OF SANITARY WARES
 5.1 Explain the Solid casting of sanitary wares
 5.2 Explain the Finishing of sanitary wares
 5.3 Explain the Glazing of sanitary wares
 5.4 Explain the Firing of sanitary wares

RECOMMENDED BOOKS

1. Industrial Ceramics by Singer & Singer.
LIST OF PRACTICALS

1. Preparation of tile body
2. Granulation
3. Pressing of granules
4. Finishing and firing
5. Development of Acid – Proof tiles
6. Making of sanitary ware Moulds of various types.
8. Determination of slip viscosity, thixotropy and specific gravity
9. Casting of slip
10. Drying, finishing and firing
GCT 302 FUELS AND KILNS

Total Contact Hours 160
Theory 64 T 3 3
Practical 96

COURSE AIM

Firing of the final product is of supreme importance in the ceramic industry because the main factor of the cost of product is dictated at this stage and most of the problems are diagnosed and encountered at this stage, therefore, this course will enable students about the workability of different fuel sources and the comprehensive insight of Kilns.

COURSE CONTENTS

1. FUELS 10 HOURS
 Types of fuels
 Solid fuels
 Liquid fuels
 Gaseous fuels

2. FURNACES KILNS 10 HOURS

3. REFRACTORY 12 HOURS
 Types of materials,
 Methods to manufacture
 Uses and properties
 Types of refractories e.g. Acid, Basic & Neutral Refractory
 Physical & Mechanical properties
 P.C.E
 Softening Point
 Load Bearing capacity
Glass, Ceramics & Pottery

Shrinkage and expansion
Thermal shock resistance
Spalling
Resistance to the action of slugs

4. **CERAMIC DRYERS & THEIR TYPES**
 10 HOURS

5. **KILNS**
 12 HOURS
 - Kilns and their types
 - Setting
 - Firing
 - Problems and solutions

6. **PYROMETER**
 10 HOURS
 - Mercury thermometers
 - Electrical resistances
 - Thermometers
 - Thermocouples
 - Measuring instruments
 - Radiations & Optical pyrometer
 - Automatic control of firing pyrometers, cones, their kinds, uses, difficulties & disadvantages in the use of the cones.
INSTRUCTIONAL OBJECTIVES

1. FUELS
 1.1 Explain the types of fuels
 1.2 Explain the utility of Solid fuels
 1.3 Explain the utility of Liquid fuels
 1.4 Explain the utility of Gaseous fuels

2. DESCRIBE THE FURNACES & HEATERS

3. REFRACTORY
 3.1 Describe the Types of materials,
 3.2 Describe the Methods to manufacture
 3.3 Describe the Uses and properties of refractories
 3.4 Describe the Types of refractories e.g. Acid, Basic & Neutral Refractory
 3.5 Describe the Physical & Mechanical properties of refractories
 3.6 Describe the P.C.E of refractories
 3.7 Describe the Softening Point of refractories
 3.8 Describe the Load Bearing capacity of refractories
 3.9 Describe the Shrinkage and expansion of refractories
 3.10 Describe the Thermal shock resistance of refractories
 3.11 Describe the Spalling of refractories
 3.12 Describe the Resistance to the action of slugs of refractories

4. EXPLAIN THE DRYERS AND THEIR TYPES

5. KILNS
 5.1 Explain the Kilns and their types
 5.2 Explain the Setting in kilns
 5.3 Explain the Firing in kilns
 5.4 Explain the Problems and solutions of kilns

6. PYROMETERY
 6.1 Describe the Mercury thermometers
 6.2 Describe the Electrical resistances
 6.3 Describe the Thermometers
6.4 Describe the Thermocouples
6.5 Describe the Measuring instruments
6.6 Describe the Radiations & Optical pyrometry
6.7 Describe the Automatic control of firing pyrometric cones, their kinds, uses, difficulties & disadvantages in the use of the cones.

RECOMMENDED BOOKS

1) Thrinks, W and Mawhineeey, M, “Industrial Furnaces” -1- “Principles, design and iperation” John wiley and sons, New York, 1953
3) Refractories by Norton FH
4) Refractories by Chesters, Sheffield London.

LIST OF PRACTICALS

1. Study of the design of a pottery-baking kiln in a pottery industry.
2. Study of the selection of refectory bricks in different parts of furnace / Kiln.
3. Experiments related to the studies and calculation of furnace kiln and firing practice will be preformed in ceramic industries.
5. To determine the Calorific value of Coal, Coke, Wood, Oil and Natural gas.
6. To draw the sketches of various types of kilns i.e. up – Draft Kiln, Down – draft kiln, Tunnel Kiln and a 50 tone Glass Kiln.
7. To use the Optical Pyrometer.
MGM-311 INDUSTRIAL MANAGEMENT AND HUMAN RELATIONS

Total Contact Hour T P C
Theory 32

AIMS: The study of this subject will enable the student to develop the management skills, Acquaint him with the principles of management and human relations and develop Psychological approach to solve the labor problems.

COURSE CONTENTS

1. INDUSTRIAL PSYCHOLOGY 2 Hours
 1.1 History and definition
 1.2 Nature and scope

2. LEADERSHIP 1 Hour
 2.1 Definition and types
 2.2 Qualities of a good leader

3. MOTIVATION 2 Hours
 3.1 Definition
 3.2 Types (Financial and non financial motives)
 3.3 Conflict of motives

4. MORALE 1 Hour
 4.1 Importance
 4.2 Development
 4.3 Measurement

5. HUMAN ENGINEERING 1 Hour
 5.1 Importance of human factor in industry
 5.2 Man-machine system
 5.3 Strategy for making allocation decisions

6. INDUSTRIAL FATIGUE AND BOREDOM 2 Hours
 6.1 Definition and distinction
 6.2 Psychological causes
 6.3 Objective causes
 6.4 Prevention

7. INDUSTRIAL ACCIDENTS 2 Hours
 7.1 Psychological causes
 7.2 Objective causes
 7.3 Prevention

8. INDUSTRIAL PREJUDICE 2 Hours
 8.1 Causes
 8.2 Remedies

9. PUBLIC RELATIONS 2 Hours
 9.1 Importance
 9.2 Functions
10. GUIDANCE AND COUNSELLING 2 Hours
 10.1 Importance
 10.2 Choice of job
 10.3 During service

11. JOB EVALUATION 2 Hours
 11.1 Importance
 11.2 Methods
 11.3 Job satisfaction
 11.4 Work simplification

12. INDUSTRIAL MANAGEMENT 2 Hours
 12.1 Introduction
 12.2 Functions of management.
 12.3 Subdivisions of management
 12.4 Objectives of industrial management

13. PERSONNEL SELECTION 2 Hours
 13.1 Recruitment of employees
 13.2 Training
 13.3 Effects of training on production and product cost

14. WORKING CONDITIONS 2 Hours
 14.1 Importance and consideration
 14.2 Effects on efficiency and per unit cost

15. TIME AND MOTION STUDY 3 Hours
 15.1 Concept and importance
 15.2 Sequence of motion study
 15.3 Principles of motion study
 15.4 Steps to time study
 15.5 Determination of operations time

16. QUALITY CONTROL 2 Hours
 16.1 Concept and advantages
 16.2 Methods.

17. ROLE OF FOREMAN IN MANAGEMENT 2 Hours
 17.1 Foreman's abilities
 17.2 Duties and functions

BOOKS RECOMMENDED:
INSTRUCTIONAL OBJECTIVES

At the completion of this course, the students will be able to:

1. KNOW INDUSTRIAL PSYCHOLOGY
 1.1 Describe brief history of industrial psychology
 1.2 Describe in detail definition of industrial psychology
 1.3 State nature and scope of industrial psychology

2. KNOW LEADERSHIP
 2.1 Define leadership
 2.2 Describe types of leadership
 2.3 State qualities of a good leader

3. UNDERSTAND MOTIVATION
 3.1 Define motivation
 3.2 Describe financial and non financial motives
 3.3 Explain conflict of motives

4. KNOW MORALE
 4.1 State importance of morale
 4.2 Describe development of morale
 4.3 State the method of measurement of morale

5. UNDERSTAND HUMAN ENGINEERING
 5.1 Explain importance of human engineering in the industry
 5.2 Explain man-machine system
 5.3 Explain strategy for making allocation decisions

6. UNDERSTAND INDUSTRIAL FATIGUE AND BOREDOM
 6.1 Define fatigue and boredom
 6.2 Describe psychological causes of fatigue and boredom
 6.3 Describe objective causes of fatigue and boredom
 6.4 Explain measures to prevent fatigue and boredom

7. UNDERSTAND INDUSTRIAL ACCIDENTS
 7.1 Explain psychological causes of industrial accidents
 7.2 Explain objective causes of industrial accidents
 7.3 Explain measures to prevent industrial accidents

8. UNDERSTAND INDUSTRIAL PREJUDICE
 8.1 Define prejudice
 8.2 Explain causes of industrial prejudice
 8.3 Explain remedies of industrial prejudice

9. UNDERSTAND THE SIGNIFICANCE OF PUBLIC RELATIONS
 9.1 Explain importance of public relations
 9.2 Explain functions of public relations

10. UNDERSTAND THE NEED FOR GUIDANCE AND COUNSELLING
 10.1 State importance of guidance and counseling
 10.2 Explain the role of guidance and counseling in choosing the job
 10.3 Describe help of guidance and counseling during service
11. UNDERSTAND JOB EVALUATION
 11.1 Explain importance of job evaluation.
 11.2 Explain methods of job evaluation.
 11.3 Explain job satisfaction.
 11.4 Explain work simplification.

12. UNDERSTAND INDUSTRIAL MANAGEMENT
 12.1 Define management.
 12.2 State functions of management.
 12.3 Enlist subdivision of management.
 12.4 Explain objectives of industrial management.

13. UNDERSTAND TRAINING AND ITS EFFECTS
 13.1 Describe the recruitment procedure of employees in an industrial concern.
 13.2 Explain training.
 13.3 Identify the kinds of training.
 13.4 Explain the effects of training on production and product cost.

14. UNDERSTAND THE EFFECT OF WORKING CONDITION ON EFFICIENCY
 14.1 Explain importance of working condition.
 14.2 Describe air-conditioning, ventilation, lighting and noise.
 14.3 State the effects of good working conditions on efficiency and per unit cost.

15. UNDERSTAND TIME AND MOTION STUDY
 15.1 Explain the concept.
 15.2 Describe the importance of work-study.
 15.3 Explain the sequence of motion study.
 15.4 State the principles of motion study.
 15.5 Describe the steps for carrying out time study.
 15.6 Explain the method of determination of operations time.

16. UNDERSTAND THE METHOD OF QUALITY CONTROL
 16.1 Define quality control
 16.2 State the advantages of quality control.
 16.3 Explain methods of quality control.

17. UNDERSTAND THE ROLE OF FOREMAN IN AN INDUSTRIAL UNDERTAKING
 17.1 Explain ability of the foreman.
 17.2 Enlist duties of foreman.
 17.3 Describe functions of foreman as middle management.
AT-121 OCCUPATIONAL HEALTH, SAFETY AND ENVIRONMENT

<table>
<thead>
<tr>
<th>Total contact hours</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory:</td>
<td>32 Hours</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Pre-requisite: None

AIMS: After completing the course the students will be able to understand the costs associated with occupational injuries and ways to develop positive attitudes towards occupational health and safety issues.

COURSE CONTENTS

1. **PROMOTING HEALTH AND SAFETY**
 - 4 Hours
 - 1.1. The Occupational Health and Safety (OH&S) program.
 - 1.2. The essential components of a health and safety policy.
 - 1.3. The basic concepts to risk management.

2. **MECHANICAL HAZARDS**
 - 2 Hours
 - 2.1. Mechanical Hazards of power-driven tools and Machines.
 - 2.2. Types of Injuries.
 - 2.3. Requirements and types of machine safeguards.
 - 2.4. Lockout/tagout system.

3. **FALLING, IMPACT, ACCELERATION, AND LIFTING HAZARDS**
 - 2 Hours
 - 3.1. Causes of falls and categories.
 - 3.2. Elements of slip and fall prevention programmes.
 - 3.3. Recommended procedures for ladder safety.
 - 3.4. Impact and acceleration hazards.
 - 3.5. Lifting hazards and their relation to back injuries.
 - 3.6. Materials handling, both manual and mechanical.

4. **ELECTRICAL HAZARDS**
 - 2 Hours
 - 4.1. Sources of electrical hazards.
 - 4.2. Effects of electricity on humans.
 - 4.3. Methods of reducing electrical hazards.
 - 4.4. Steps to be taken to assist a victim of electric shock.

5. **FIRE HAZARDS**
 - 2 Hours
 - 5.1. Sources of fire hazards.
 - 5.2. Methods of reducing fire hazards.
 - 5.3. Emergency procedures and means of escape.
 - 5.4. Classification of fire extinguisher.

6. **CHEMICAL HAZARDS**
 - 4 Hours
 - 6.1. Occupational diseases and illnesses.
 - 6.2. Agents which can cause disease and illness.
 - 6.3. Three routes of entry of chemicals into the body.
 - 6.4. Classification of effects of substances.
7. **PHYSICAL HAZARDS**
4 Hours
7.1 Noise.
7.2 Vibration.
7.3 Heat Stress.
7.4 Radiation.
7.5 Lasers
7.5 Lighting

8. **CONFINED SPACES HAZARDS**
2 Hours
8.1 Characteristics of a confined space.
8.2 Hazards involved in confined spaces.
8.3 Safety measures to be taken while working in confined spaces.

9. **PERSONAL PROTECTIVE EQUIPMENT**
4 Hours
9.1 Head protectors.
9.2 Types of protection for the feet.
9.3 Protection for hands and arms.
9.4 Protection of the eyes and face in various applications.
9.5 Types of hearing protection.
9.6 Respiratory protection.

10. **ACCIDENT PREVENTION**
4 Hours
10.1 Stages of an accident investigation and analysis.
10.2 The importance of good house-keeping in a workplace.
10.3 The essential sections of a Material "Safety Data Sheet.
10.4 Safe handling and storage of chemicals.

11. **FIRST AID**
2 Hours
11.1 ABCs of First Aid.
11.2 First Aid training program.
11.3 Contents of a typical First Aid kit.
11.4 MSDS

REFERENCE BOOKS
3. The occupational Environment-Its Evaluation and control, Editor Dinardi (AIHA Press).
INSTRUCTIONAL OBJECTIVES

1. **PROMOTING HEALTH AND SAFETY**
 1.1. Outline the reasons for an Occupational Health and Safety (OH&S) program.
 1.2. Illustrate the essential components of a health and safety policy.
 1.3. Realize the benefits of rules and regulations on OH&S.

2. **MECHANICAL HAZARDS**
 2.1. Identify mechanical hazards of power-driven tools and machines.
 2.2. Describe types of injuries that can be caused by these tools and machines.
 2.3. Requirements and types of machine safeguards.
 2.4. Explain what a lockout/tagout system is.

3. **FALLING, IMPACT ACCELERATION, AND LIFTING HAZARDS**
 3.1. List causes of falls and categorize them.
 3.2. Outline key elements of slip and fall prevention programs.
 3.3. Discuss recommended procedures for ladder safety.
 3.4. Describe impact and acceleration hazards.
 3.5. Identify lifting hazards and their relation to back injuries.
 3.6. Discuss materials handling, both manual and mechanical.

4. **ELECTRICAL HAZARDS**
 4.1. Describe sources of electrical hazards.
 4.2. Describe the effects of electricity on humans.
 4.3. Describe some methods of reducing electrical hazards.
 4.4. Outline steps to be taken to assist a victim of electric shock.

5. **FIRE HAZARDS**
 3.1. Describe sources of fire hazards.
 3.2. Describe methods of reducing fire hazards.
 3.3. Describe emergency procedures and means of escape.
 3.4. Describe the fire extinguisher classifications.

6. **CHEMICAL HAZARDS**
 6.1. Describe occupational diseases and illnesses.
 6.2. Define, with some of their properties, agents which can cause disease and illness.
 6.3. Explain the three routes of entry of chemicals into the body.
 6.4. Describe classification of effects of substances.

7. **PHYSICAL HAZARDS**
 7.1. Describe typical methods of controlling exposure to noise.
 7.2. Explain typical methods of control of vibrations.
 7.3. Describe the effects of radiation on humans and outline exposure control.
 7.4. Describe typical effects of lasers on humans and outline exposure control.
 7.5. Explain common problems of lighting and their effects.
 7.6. Describe illnesses that can be caused by heat stress and discuss its control.

8. **CONFINED SPACES HAZARDS**
 8.1. Discuss the characteristics of a confined space.
 8.2. Explain the hazards involved in confined spaces.
 8.3. Describe safety measures to be taken while working in confined spaces.
9. **PERSONAL PROTECTIVE EQUIPMENT**
 9.1 Describe head protectors.
 9.2 Describe various types of protection for the feet.
 9.3 Describe protection for hands and arms.
 9.4 Describe protection of the eyes and face in various applications.
 9.5 Describe different types of hearing protection.
 9.6 Outline safe handling and storage of chemicals.

10. **ACCIDENT PREVENTION**
 10.1 Outline stages of an accident investigation and analysis.
 10.2 Explain the importance of good house-keeping in a workplace.
 10.3 Outline the essential sections of a Material Safety Data Sheet.
 10.4 Discuss safe handling and storage of chemicals.

11. **FIRST AID**
 11.1 State the ABCs of First Aid.
 11.2 List the essential activities of a basic First Aid training program.
 11.3 List the contents of a typical First Aid kit.
 11.4 Recognize an MSDS as a source of information about First Aid.

Note: The project will be awarded at the start of academic year.